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ABSTRACT

Cellular networks can provide highly available and reliable communication links to the Internet

of Things (IoT) applications, letting the connected Things paradigm gain much more momentum

than ever. Also, the rich information collected from the Things with sensing capabilities can

guide the network operator to an unforeseen direction, allowing the underlying cellular networks

to be further optimized. In this regard, the cellular networks and IoT are conceived as the key

components of the beyond-4G and future 5G networks. Therefore, in this dissertation, we study

each of the two components in depth, focusing on how to optimize the networking resources for

the quality service and better energy-efficiency. To begin with, we study the heterogeneous cellular

network architecture which is a major enhancement to the current 4G network by means of the base

station (BS) densification and traffic offloading. In particular, the densely deployed short-range,

low-power smallcell base stations (SBSs) can significantly improve the frequency reuse, throughput

performance and the energy-efficiency. We then study the heterogeneous C-RAN (cloud radio access

network), which is one of the core enablers of the next generation 5G cellular networks. In particular,

with the high availability provided by the long-range macro BS (MBS), the heterogeneous C-RAN

(H-CRAN) can effectively enhance the overall resource utilization compared to the conventional

C-RANs. In each study, we propose an optimal resource scheduling and service provisioning scheme

to provide a quality service to users in a resource-efficient manner. In addition, we carry out two

studies for the Internet of Things (IoT) networks operating with the IEEE 802.11ah standard.

Specifically, we introduce energy-efficient device management algorithms for the battery-operated,

resource-constrained IoT sensor devices to prolong their lifetime by optimally scheduling their

activation. The enhanced power saving mechanism and the optimal sensing algorithm that we

propose in each study can effectively improve both the energy-efficiency of the IoT devices and the

lifetime of the entire network.
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CHAPTER 1. OVERVIEW

In this chapter, we introduce the background and motivation of the studies to be discussed in this

dissertation. Then, the overall objective of the research is addressed, followed by the organization

of the dissertation.

1.1 Introduction

Internet-accessible mobile handheld devices have changed our daily lives to a large extent, which

can be easily seen by the unprecedented increase in the data usage from mobile devices. In the

United States, for example, the Internet usage from mobile applications exceeded that from desktop

computers in 2014 [1]. Furthermore, in 2016, it was reported that the Internet usage on mobile

devices surpassed that on desktop computers worldwide [2]. Such a massive traffic shift from

desktop computers to mobile devices has been driven by many factors, such as widespread use of

the Internet-accessible mobile devices and a surge of bandwidth-hungry applications. In addition,

the technologies allowing devices to stay connected anytime/anywhere, such as smart home/office,

ambient assisted living, and Internet of Things (IoT), even expedited such a transition.

As a result, the Internet traffic over wireless networks has been sharply increased, and it is

estimated that by 2020 it will exceed 500 exabytes [3]. Similarly, as pointed out in [4] the total

amount of traffic to be generated by mobile devices is expected to be increased by tenfold between

2014 and 2019. It is noteworthy that these predictions in the growing data usage also imply a

significant increase in the number of the Internet-accessible devices. As a result, it is inevitable

that the current 4G network and its ecosystem will be saturated in a very near future despite

all the efforts that have been made to extend its capacity to the theoretical limit. Therefore, it

is essential to transition to the next generation networking system to accommodate not only the
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ever-increasing traffic demand with short delay and high reliability, but also the gigantic number

of Internet-accessible devices to be deployed everywhere.

To this end, there has been a series of movements to make a step towards the fifth-generation

(5G) networking system. The key requirements for 5G are 1000x aggregate data rate increase

compared to 4G, a round-trip latency of approximately 1 ms, reduced energy consumption, 99.9%

of reliability, massive number of connections (i.e., 1,000,000 devices/km2 of connection density), to

name a few [3] [5]. Although it still is challenging, both academia and industry have been striving

with a tremendous amount of efforts to realize the 5G networking system in the near future, and

they indeed have seen some notable progress on it.

As summarized and classified in [3] one of the key enablers for the 5G networking system is the

heterogeneous architecture and the densification of the low-power, short-range base stations (BSs).

The heterogeneous network configuration can greatly enhance the network performance. Densely

deployed short-range low-power base stations (i.e., smallcell base stations or SBS) can be used

to offload users’ traffic from the conventional macro base station (MBS), preventing MBSs from

being congested. By taking advantage of the shorter distance to the users, the low-power SBSs can

achieve high throughput performance with low energy consumption, increasing the area spectral

efficiency and energy-efficiency. In addition, for being low-cost and easy to deploy/operate, SBSs

can reduce both the capital and operational expenditures.

Besides the densification of the low-power BSs, the power of cloud computing and its success

in the market has resulted in the new design of the cellular networks, called cloud radio access

network (C-RAN). C-RAN, which is conceived as one of the core enablers for the 5G networking

system, is composed of three major components: RRH (remote radio head), fronthaul network,

and BBU (baseband processing unit) pool. The MAC and PHY functionalities are shifted from

the conventional BSs to the cloud computing platform (i.e., BBU pool) to take advantage of its

powerful processing capability. Also, such a shift in functionality makes the RRHs low-complex

and low-cost, enabling dense deployment of RRHs with an affordable capital expenditure. Also,



www.manaraa.com

3

the centrality of information processing at the BBU pool allows an easier cooperation among RRHs

and an effective resource optimization.

In addition to the soon-to-come traffic surge from the mobile devices, it is expected that the

future Internet will attract a large number of networked objects [6]. Such a network paradigm is

referred to as IoT where the physical devices in the surrounding areas are connected to the Internet

to collect data and/or to react to the events happening nearby. The IoT paradigm has begun to

change the major portion of the economy, and before long, trillions of “Things” are expected to be

connected to each other, and eventually, to the Internet [7]. The IoT has been bringing tremendous

opportunities in many applications such as environment monitoring, smart home/city, automated

manufacturing, ambient assisted living, inventory monitoring, smart grid, health, public safety and

so forth.

One major technical challenge in realizing such IoT applications is the support of large-scale

networked devices in a unified manner. So far, different applications have been using different

networking systems to connect devices to achieve the application-specific goals; for example, Zigbee,

IEEE 802.15.4, 6LoWPAN, Bluetooth and cellular networks, to name a few. Such diversification

in networking solutions makes the cooperation among different networks challenging, and thus,

limiting the scalability of the network. Another challenging aspect is the use of battery-operated

devices. IoT devices in general are resource-constrained in that they have limited computing power,

form factors and battery capacity. Considering that the expected lifespan of IoT applications are

ranging from months to years, an energy-efficient operation of IoT devices is important to prolong

the lifetime of the IoT devices and the IoT application.

To support such large-scale network of resource-constrained devices, IEEE released a new

WLAN (wireless local area network) standard for IoT in 2017, called IEEE 802.11ah [8] [9] or

Wi-Fi HaLow. IEEE 802.11ah provides a long transmission range (i.e., approximately 1km) and a

support of a large number of devices to be associated (i.e., approximately 8000 devices per access

point), and thus, is considered as one of the most promising networking solutions for large-scale IoT

applications. Also, IEEE 802.11ah has a set of features to enhance the energy efficiency of battery-
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operated devices, for example, Power Saving Mode and Restricted Access Window mechanism by

which many devices can stay in the low-power state for long.

1.2 Motivation

On one hand, experts from both academia and industry are seeking for ways to boost up the net-

work capacity (e.g., throughput) to be prepared for the high traffic increase from bandwidth-hungry

applications and large-scale IoT networks. On the other hand, the increased energy consumption

is a matter of concern to the environment because of the greenhouse gas emission. It has been

estimated that the Information and Communication Technology (ICT) sector accounts for 2% of

the total CO2 of emission. Among those from networks, to be specific, the mobile communication

infrastructures will contribute more than 50% by 2020 [10]. In particular, the power consumption

from BSs is expected to account for 60-80% of the total power usage from cellular networks [11]

due to the rapid growth in both the number of BSs deployed and the aggregate mobile traffic.

The increased power consumption is also becoming one of the main sources for the high oper-

ational expenditure. In order to meet the ever-growing traffic demand from users, mobile network

operators have been expanding the network infrastructure to increase the network capacity. Such

a practice also increases the energy consumption from the infrastructure because, in general, BSs

always need to be active to provide coverage and service availability. Since the majority of energy

consumption is stemming from the BSs [12], an energy efficient resource management scheme for

BSs needs to be thoroughly studied to reduce both the negative effect on the environment and the

operational expenditure to the network operators.

The energy consumption has an importance in IoT applications as well, but in a different

perspective. The major concern in the network of resource-constrained devices is that the IoT

devices are battery-operated. To guarantee the expected longevity of IoT applications, IEEE

802.11ah has introduced a set of built-in power saving mechanisms including Power Saving Method.

In addition, the structured device management scheme and the restricted access window method

limit the the channel contention with which devices can spend less power on accessing channel
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and stay in the low-power state for long. However, further optimizing the energy-efficiency of

battery-operated devices is essential to meet the expected lifetime of both the IoT devices and the

network. It is particularly important to some critical applications such as battlefield, public safety

and disaster monitoring, to protect citizens and their property.

1.3 Overall Objective

In this dissertation, we study how to optimally schedule the networking resources for better

energy-efficiency and quality service. To do so, we first study to identify the essential resource

components in the network of our interest, and then, propose a mathematical model/formulation

representing how much resource to assign to each user/device to provide how much of the demand

to satisfy. The energy efficiency which is the primary performance metric to be considered in this

dissertation will be introduced as either a sole objective or part of the combined multiple objectives

in each studies. In addition, each problem formulation to be introduced has a set of constraints to

be satisfied, such as quality of service (QoS), minimal signal-to-interference-plus-noise ratio (SINR),

and/or a set of rules to be abide by depending on the networking standard to operate with. The

specific goal (or a set of goals) and the set of constraints will be clarified at the beginning section

of each chapter.

1.4 Organization of Dissertation

The studies to be introduced in this dissertation can be grouped into the following two categories.

One is the energy-efficient resource scheduling for cellular networks, and the other is the energy-

efficient device scheduling for the resource-constrained IoT devices on the IEEE 802.11ah WLANs

standard. For each study, we consider a certain networking standard or technology to be considered

as one of the main drivers for the future networking system. In Chapter 2 and Chapter 3, we propose

an energy-efficient resource scheduling scheme for the beyond-4G heterogeneous cellular networks

and the 5G C-RANs, respectively, to provide a quality service to the cellular service subscribers.

The Chapter 4 and Chapter 5, on the other hand, introduce an energy-efficient device scheduling and
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management algorithm, respectively, for the IEEE 802.11ah WLAN which is designed to provide a

large-scale connectivity to the resource-limited and battery-operated IoT devices. To conclude, in

Chapter 6, we summarize the dissertation, and then, introduce future research directions.
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CHAPTER 2. QOS-AWARE ENERGY-EFFICIENT RESOURCE

OPTIMIZATION FOR BEYOND-4G CELLULAR NETWORKS

2.1 Summary

A heterogeneous network (HetNet) can actively utilize the spectrum reuse with low power con-

sumption, and thus is promising for the next-generation cellular networks. However, there are

some technical challenges to be overcome in order for HetNets to be practical, and we address the

following two in this chapter. One is how to formulate the association and resource scheduling

problem in a way that an optimal solution can be found in a reasonable amount of time, and the

other is how to accommodate varying users’ demand. In order to minimize the power consumption

and to satisfy varying users’ QoS (Quality of service) requirements, we propose a low-complex,

distributed association and resource allocation scheme. By taking a cost-based approach, we first

separate a non-convex joint association and resource allocation problem into two subproblems. The

channel allocation and base station assignment problem is then relaxed so that the problem be-

comes tractable. For the power allocation problem, we introduce a low-complex iterative algorithm

by using the decomposition theory. The evaluation results show that the proposed solution can

maintain the overall power consumption minimized while satisfying the QoS requirements. The

complete version of this chapter has been published in [13].

2.2 Introduction

A recent report pointed out that in 2014 the amount of data traffic from mobile devices increased

69%, resulting in a monthly usage of 2.5 exabytes [4]. Such an explosive increase in mobile traffic

has been led by a widespread usage of mobile handheld devices and bandwidth-hungry applications.

The ever-increasing mobile traffic is unlikely to be saturated at least for the next five years; rather,
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the total amount of traffic generated by mobile devices is expected to be increased by tenfold

between 2014 and 2019 [4].

On one hand, experts from academia and industry are seeking for ways of boosting up the

communication technology to be prepared for the sharply-increasing traffic demand. On the other

hand, the increased energy consumption is a matter of concern to the environment because of the

greenhouse gas emissions and the increasing OPEX1. It is estimated that the ICT sector accounts

for 2% of the total CO2 emission, and among those from networks, to be specific, the mobile

communication infrastructures will contribute more than 50% by 2020 [10]. In particular, the power

consumption from BSs is expected to account for 60–80% of the total power usage from cellular

networks [11] due to the rapid growth in both the number of BSs deployed and the aggregate mobile

traffic.

Among those technologies taking the two aforementioned aspects into account, the heteroge-

neous architecture [14] is one of the most promising technologies, because it is not only applicable

to the current 4G networking system, but also considered as an essential component for the future

generation (5G) networking system [3][15][16]. A HetNet, in general, is formed by deploying multi-

ple low-power, low-cost SBS (e.g., microcells, picocells and femtocells) on top of a high-power MBS,

and it has many advantages. For example, due to the short coverage of SBSs, the spectrum reuse

can be actively exercised. Also the channel quality between an SBS and its associated UE is so

good that a higher data rate can be easily achieved, while operating in low power. Being relatively

compact in size as well as the ease of installation enables SBSs to be flexibly deployed so that

they can effectively extend the coverage of MBSs and offload users’ traffic especially in crowded

areas, such as shopping malls, sport stadiums, concert arenas and so forth. Further, much cheaper

CAPEX and OPEX of SBSs have intrigued a great amount of attention from both academia and

industry.

Motivated by the fact that HetNet is a cost-effective and practical solution, the use of SBSs has

been widely introduced (including [3], [15] and [17]) and studied in many literatures. In addition,

1Abbreviations and acronyms are listed in Table 2.1.
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Table 2.1: Abbreviations and acronyms used in Chapter 2

CAPEX CAPital EXpenditure

HetNet Heterogeneous Network

ICT Information and Communications Technology

LTE Long-Term Evolution

MBS Macro Base Station

OFDMA Orthogonal Frequency-Division Multiple Access

OPEX OPerational EXpenditure

QoS Quality of Service

SBS Smallcell Base Station

SINR Signal-to-Interference-plus-Noise Ratio

UE User Equipment

the concept of HetNet is accepted by the standard body and introduced in LTE [14] [18] [19]. One

common concern in those works is either how to offload the user traffic from an MBS to SBSs or

how to schedule the network resource so as to achieve their own objectives, such as maximizing

spectral efficiency, energy efficiency, a certain utility measure and so forth.

As mentioned in [20], however, introducing SBSs may rather increase the overall power con-

sumption unless they are handled carefully. In general, the careful handling includes well-designed

offloading strategies (i.e., establishing associations between UEs and SBSs), preferably with a dy-

namic switching on/off scheme [10][11], and resource scheduling (i.e., transmission power control

and bandwidth allocation). Even after the optimal decision has been made, one cannot guarantee

the optimal decision will remain optimal in the future because the QoS requirement of each user

and/or the wireless link quality frequently changes over time. However, a frequent manual reconfig-

uration of the system is not appealing because it is hard to be responsive to the network dynamics,

and also increases OPEX to a large extent especially when the BSs are densely deployed[19]. In

this regard, a self-configuring or an automated mechanism that is able to respond or adapt to the

network dynamics needs to be studied from the perspective of HetNets.

In addition, the centrality can cause a serious issue especially in HetNets. In a centralized

system, all decisions are made by one or a small group of entities. As a result, a huge volume

of information should be either exchanged in real-time or stored/updated at a shared storage,
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which incurs a significant burden to the system. In addition, a centralized system requires a high

processing capability and power consumption to handle a large volume of data as the network grows

in size. For those reasons, a centralized system may not be responsive and it might even consume

a large amount of power for resource scheduling; whereas a distributed algorithm does not.

In this chapter, we study the distributed user association and resource allocation for Het-

Nets that minimizes the overall power consumption. By considering both association and resource

scheduling together, we propose a complete management framework for an energy-efficient HetNet.

In order to efficiently schedule the use of BSs as well as the networking resource (i.e., transmission

power and spectrum) we formulate a two-stage iterative optimization problem which can be solved

in a distributed manner without requiring a heavy control message exchange or a high computa-

tional cost. To do so, we first partition the non-convex, joint association and resource allocation

problem into two subproblems by using a cost-based approach that effectively estimates the power

use. In addition, relaxation and decomposition techniques are applied to the association and the

resource scheduling problems, respectively, so as to reduce the computational complexity. After the

decomposition, we propose a distributed power update method, which converges to the optimum;

we show its convergence by both simulation and analysis. An extensive amount of evaluations and

comparison studies has been performed on various network scenarios to show the effectiveness of

the proposed BS/channel assignment and power allocation scheme. Lastly, we show the efficiency

of the proposed scheme by showing its fast convergence.

The rest of this chapter is organized as follows. In Section 2.3, we describe the network model

and then introduce the problem formulation for both i) BS association and channel assignment and

ii) power allocation. Section 2.4 presents the evaluation and comparison results, and finally Section

2.5 concludes the chapter.

2.3 Problem Formulation

We begin this section by describing the network model and assumptions. In what follows, we

introduce how the optimal user association and resource allocation problem are formulated.
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2.3.1 Network Model and Assumptions

Throughout the chapter, we focus on the downlink transmission for a two-tier OFDMA (Or-

thogonal Frequency-Division Multiple Access) cellular network. On the network are M MBSs, and

each of which is overlaid by S SBSs. MBSs are distributed in a planned manner (e.g., by keeping

the same inter-cell distance between the nearby MBSs) in order to provide area coverage, mobility

management and so forth; while SBSs are randomly2 distributed [14] [23] [26] [27] [40] [41] [42]. The

reason for assuming the random deployment of SBSs is that their deployment is much less planned

[20] compared to that of MBSs. To be specific, they are likely to be installed on demand or in an

ad hoc manner so as to fulfill a sudden or periodic increase of the QoS requirement in certain areas

such as a shopping center, sports complex, office, household and so forth. It is worth mentioning

that the proposed scheme does not assume or rely on any specific area or region. Therefore, in order

to show that the proposed scheme does not depend on any certain distributions of SBS, a random

distribution is used to represent the placement/layout of SBSs in general. All MBSs are always

active in order to provide the full area coverage to all UEs [19]. On the other hand, SBSs may or

may not be active depending on the user association status at the moment. Any non-offloaded UEs

are automatically associated with the MBS that provides the strongest signal strength by default.

MBSs and SBSs are assumed to operate on different frequency bands to avoid cross-tier in-

terference [31] [32] [34] [42]. However, the same type of base stations share the same frequency

range, and thus they always interfere with each other. In this work, the coverage of an MBS in-

dicates the area within which all non-offloaded UEs shall associate with the MBS. However, the

signal generated by each MBS propagates beyond its coverage, and thus incurs interference to the

rest MBSs; this principle applies to SBSs as well. Both types of base stations can access the core

network through wired communication links. Each MBS has U UEs (or users) whose average data

rate requirements are known. We assume that SBSs operate fully (or in part) with an open access

mode.3 The available bandwidth is divided into multiple channels, each of which is ∆f -wide in Hz.

2In Section 2.4, we have used Uniform distribution for simulation.
3If all the SBSs are deployed by the end-users, the open access mode may not be a practical assumption to make.

However, by focusing on the scenario where all SBSs are deployed by the network operator, or considering only those
SBSs operating with the open access mode (or the hybrid mode [20]), we argue that this assumption still holds.
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Table 2.2: Summary of notations used in Chapter 2

M Number of MBSs on the network

S Number of SBSs on a macrocell

U Number of UEs on a macrocell

Nch Number of available channels

NM
ch Number of available channels for an MBS

NS
ch Number of available channels for an SBS

NM Index set of MBS-accessible channels

N S Index set of SBS-accessible channels

M Index set of MBSs, {1, 2, · · · ,m, · · · ,M}
Sm Index set of SBSs overlaid on MBS m, {1, 2, ..., s, ..., S}
Um Index set of UEs within the coverage of MBS m,

{1, 2, ..., u, ..., U}
Um0 Subset of Um. UEs associated with MBS m

Ums Subset of Um. UEs associated with SBS s ∈ Sm
pm0 Transmission power vector of MBS m over channels

pms Transmission power vector of SBS s ∈ Sm over channels

gmu Channel gain vector of UE u ∈ Um over channels

ηthr SINR threshold

rmu QoS (i.e., data rate) requirement of UE u ∈ Um
∆f Channel bandwidth

PMmax Maximum transmission power of MBS

PSmax Maximum transmission power of SBS

cmu Cost vector of UE u ∈ Um over channels

N0 Per-Hz noise power

We also assume the continuous power and rate control. Some of the frequently-used notations are

summarized in Table 2.2, and other notations that are not on the table will be introduced when

necessary.

2.3.2 Cost-Based Problem Separation

Considering that the joint association and resource allocation problem belongs to a mixed

integer nonlinear program with the decision variables coupled, the computational cost of the joint

problem is prohibitive. Thus, the approach taken in this work is to first partition the problem

into two, one for the user association and channel allocation (Stage 1), and the other for the power
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allocation (Stage 2), and then apply relaxation and decomposition techniques, respectively, in order

to make the whole procedure tractable and suitable for online resource scheduling. To this end,

we have introduced a cost function, by which the original problem will be separated into two. It

is worth mentioning that after the partitioning, the proposed two-staged method may result in a

sub-optimal solution. After the problem separation, however, Stage 1 does not know how much

power will actually be used for communication. Therefore, it is crucial that the cost needs to be

designed in a way that it can correctly estimate the amount of power to be used.

At the beginning of Stage 1, a UE u ∈ Um senses the pilot signals from nearby BSs over the

entire channels, and produces a channel gain vector gmu ∈ RNch
+ . Out of Nch entries in gmu , NM

ch

elements correspond to the measured channel gains between UE u ∈ Um and MBS m over NM
ch

channels that are accessible to MBSs. Therefore, all the NM
ch elements in gmu are strictly positive

due to the area coverage provided by the closest MBS m, while the rest elements are nonnegative.

If a UE resides within the coverage of an SBS, we have gmu � 0Nch
where � is an element-wise

greater than operator and 0Nch
is an Nch-by-1 zero vector. Also, in such cases, a UE can recognize

the identifier of the SBS by decoding the pilot signal.

To be consistent throughout the chapter, let us assume that the indices of the channels used by

MBSs come before the ones used by SBSs. In other words, out of Nch number of channels available

whose index starts from 1 to Nch, each MBS has an access to the channels indexed by 1, 2, · · · , NM
ch ,

while an SBS is allowed to use the ones indexed by NM
ch + 1, · · · , Nch. In this regard, let NM and

N S be {1, 2, · · · , n, · · · , NM
ch } and {NM

ch + 1, · · · , n, · · · , Nch}, respectively.

Given gmu and the data rate requirement rmu ∈ R++, each UE u builds its own cost vector

cmu ∈ RNch
++ , where its n-th entry is:

cmu,n =


(2r̃

m
u − 1)/gmu,n, if gmu,n > 0.

∞, otherwise,

(2.1)

where r̃mu = rmu /∆f is a normalized data rate requirement. In fact, cmu is a measure of power

required to satisfy the data rate requirement of UE u ∈ Um across all channels with the interference

and noise term ignored. According to the Shannon's well-known channel capacity formula, an
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achievable bit rate over a channel is defined as C = B log2(1 + gP
I+N ), where C is channel capacity

measured in bits per second (bps), g is channel gain, P is transmission power, I is interference and N

is noise. In order not to violate the QoS requirement for each UE, we need to satisfy the constraint

rmn ≥ C. Since the minimum power is achieved when the QoS requirement is satisfied with equality,

we can rewrite the Shannon's capacity formula as follows after replacing B and g with ∆f and gmu,n,

respectively, to be consistent in notation: rmu = ∆f · log2(1 +
gmu,nP

I+N ) or r̃mu = rmu
∆f = log2(1 +

gmu,nP

I+N ).

After rearranging the equation, the minimum transmission power that satisfies the QoS requirement

can be found by P = (2r̃
m
u )(I + N)/gmu,n. By assuming the sum of interference and noise is not

dominant in determining the transmission power, we get the following relation which leads to how

we defined the cost term in Eq. (2.1), i.e., P ∝ 2r̃
m
u /gmu,n = cmu,n.

After gathering the cost vectors from all UE (∀u ∈ Um) along with their nearby SBS IDs, if

applicable, an MBS m runs both Stage 1 and 2 in sequence which will be discussed as follows.

2.3.3 Stage 1: User Association and Channel Assignment

The goal of this stage is to find the best association (i.e., an offloading strategy) and channel

assignment that minimizes the overall cost, which represents the expected amount of power use

as discussed before. Given the cost vectors collected, we have the following optimization problem

P. 2.2 for each MBS m that minimizes the overall cost of making user association and channel

assignment. Please note that s.t. in the problem formulation stands for subject to.

min
Xm

tr[Xm · (cm)T ] (2.2a)

s.t.

Nch∑
n=1

Xm
u,n = 1,∀u ∈ Um (2.2b)

∑
u∈Um

Xm
u,n ≤ 1,∀n ∈ NM (2.2c)

∑
u∈Um

Xm
u,n · Imu,s ≤ 1, ∀n ∈ N S ,∀s ∈ Sm (2.2d)

Xm ∈ {0, 1}U×Nch , (2.2e)
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where tr[·] is the trace function that sums the diagonal elements of a matrix ·, the decision variable

Xm is a U -by-Nch matrix of which (u, n) element is 1 (or 0) if UE u is (or is not) assigned to

channel n, cm is a U -by-Nch matrix whose u-th row corresponds to the cost vector of UE u and

Im is an U -by-S matrix whose (u, s) element is 1 if UE u successfully decoded the pilot signal

from SBS s. The objective function (2.2a) in P. 2.2 calculates the total cost with respect to the

mapping between UEs and channels (and BS as well). The objective function can also be written

as
∑
∀u∈Um Xm

u · (cmu )T or
∑
∀u∈Um

∑Nch
n=1X

m
u,n · cmu,n. Since the cost Xm

u,n · cmu′,n′ is meaningful only

when u = u′ and n = n′, we take the sum of only the diagonal elements from Xm · (cm)T , i.e.,

tr[Xm · (cm)T ]. Each UE is allowed to use 1 unit of channel resource (2.2b), and each MBS and

SBS channel cannot be used for more than 1 unit each, (2.2c) and (2.2d), respectively. The decision

variable represents a membership relation, and thus is binary (2.2e).

Please note that P. 2.2 runs on a small time scale; for example, 1 ms to comply with the 3GPP

E-UTRA requirement [18]. Given that 3GPP E-UTRA makes use of physical resource blocks for

communication, even when the number of available channels is less than that of active UEs, the

proposed method can still fulfill the service demand from UEs by scheduling the resource blocks. As

long as the demand from a UE can be satisfied without violating the delay constraint, the proposed

method may schedule the UE for communication in one of the following time slots if the number of

available channels at the moment is not enough. That is, having failed in assigning a BS/channel to

a UE for the moment does not necessarily mean a failure in satisfying the UE’s QoS requirement.

In addition, the densely deployed, short-range SBSs can achieve high frequency reuse, meaning

that the aggregate number of channels seen by users can be larger than that of physical channels.

However, if the aggregate service demand for a certain period exceeds the maximum attainable

throughput over the network during the same period, some of the active users may experience

service degradation, which will be discussed in Section 2.3.4.

Due to the combinatorial nature of P. 2.2, however, the problem is not tractable, and thus is

not suitable for an online scheduling. By relaxing the binary constraint (2.2e), we get the following

convex problem that can be efficiently solved by each MBS m with the complexity of O((U ·Nch)3)
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when the interior point method is used.

min
Xm

tr[Xm · (cm)T ] (2.3a)

s.t.

Nch∑
n=1

Xm
u,n = 1,∀u ∈ Um (2.3b)

∑
u∈Um

Xm
u,n ≤ 1,∀n ∈ NM (2.3c)

∑
u∈Um

Xm
u,n · Imu,s ≤ 1, ∀n ∈ N S ,∀s ∈ Sm (2.3d)

Xm ∈ [0, 1]U×Nch . (2.3e)

Although the optimal solutions from both P. 2.2 and P. 2.3 indicate the channel assignment

as well as the user association for each UE, both solutions are not the same in practice. The

binary solution from P. 2.2 lets each UE use the assigned channel and BS for a unit time, whereas

the (possibly) non-binary solution from P. 2.3 forces a UE to hop between channels (and possibly

between BSs as well) during the same unit time since the optimal solution indicates the fraction of

time that a UE is allowed to use one or more BSs and channels. The non-binary solution seems to

be attractive since it yields a better (or at least the same) optimal value because of the relaxation.

However, it increases the amount of control messages as well as the scheduling complexity due to

the frequent handover and channel hopping that should be made on a very precise timescale.

In this regard, we will recover binary solutions from the non-binary solutions from the relaxed

optimization problem P. 2.3 by using the one-by-one removal algorithm [36] [43] [44] [45]. This

relax-and-recover approach will help the system maintain a low complexity in both computation

and operation.

The Algo. 1 iteratively solves the relaxed optimization problem (line 2), searches for the nonzero

minimum value for each UE (line 4), and forces each to be zero (line 5). Each MBS concurrently

runs the algorithm which terminates in less than or equal to Nch number of iterations. Please note

that the solution found by running Algo. 1 may yield a sub-optimal solution to P. 2.2; the optimality

of the solution will be investigated in Section 2.4. Given the recovered binary user association and

channel assignment decision, the following Stage 2 allocates the minimum power to each UE. Note
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Algorithm 1 Gradual one-by-one removal (for MBS m)

1: repeat

2: Solve the relaxed optimization problem P. 2.3

3: for ∀u ∈ Um do

4: n∗ = arg min∀nX
m
u,n such that Xm

u,n 6= 0

5: Set Xm
u,n∗ = 0

6: end for

7: until all Xm
u,n are binary

that the channel assignment problem also finds the best BS match for each UE. Those SBSs with

no UE associated shall change their state into the SLEEP mode in order to save energy, while the

other SBSs stay in the ACTIVE mode [20].

2.3.4 Stage 2: Power Allocation

This stage allocates the minimum power to each UE by taking both SINR and QoS requirements

into account. In this regard, we first formulate the centralized power allocation problem where one

or a small number of central entities have to control the downlink power for all BSs. In what

follows, the centralized problem is decomposed into multiple low-complex subproblems which are

scalable and suitable for online scheduling.

Before introducing the Stage 2 problem formulation, let us extend the notation of the channel

gain so that we can comprehensively represent the gain between all the entities including that

do not even belong to the same macrocell. As a reminder, the channel gain gmu represents the

channel gain between UE u ∈ Um and either MBS m or SBS s ∈ Sm, where all of them are within

the coverage of MBS m. This is because gmu is determined by overhearing the pilot signals over

channels; thus, it should be coupled with the nearest MBS and SBS (if applicable). Let G0,m
u,n be

the gain over channel n between UE u and MBS m, where u does not need to be a member of Um.

In the same manner, let Gs,mu,n be the gain over channel n between UE u and SBS s, where u does

not need to be a member of Um, but s must be a member of MBS m, i.e., s ∈ Sm. Thus, for any



www.manaraa.com

18

UE u ∈ Um, we have gmu,n = G0,m
u,n for any n ∈ NM . On the other hand, we have gmu,n 6= G0,m′

u,n for

any n ∈ NM
⋃
N S if m 6= m′.

Given the BS association and channel assignment made in Stage 1, we have the power allocation

problem P. 2.4 for MBS m and all SBSs therein (i.e., ∀s ∈ Sm) that minimizes the overall power

consumption.

min
Pm

∑
n∈NM

Pm0,n +
∑
s∈Sm

∑
n∈NS

Pms,n (2.4a)

s.t.

ηmu,n ≥ ηthrXm
u,n, ∀n ∈ NM ,∀u ∈ Um0 (2.4b)

ηmu,n ≥ ηthrXm
u,n, ∀n ∈ N S ,∀u ∈ Ums , ∀s ∈ Sm (2.4c)

∆f log2(1 + ηmu,n) ≥ rmu Xm
u,n,∀n ∈ NM , ∀u ∈ Um0 (2.4d)

∆f log2(1 + ηmu,n) ≥ rmu Xm
u,n,

∀n ∈ N S ,∀u ∈ Ums , ∀s ∈ Sm (2.4e)

0 ≤ Pm0,n ≤ PMmax, ∀n ∈ NM (2.4f)∑
n∈NM

Pm0,n ≤ PMmax (2.4g)

0 ≤ Pms,n ≤ PSmax, ∀n ∈ N S ,∀s ∈ Sm (2.4h)∑
n∈NS

Pms,n ≤ PSmax,∀s ∈ Sm, (2.4i)

where Pm0,n is the power allocated by MBS m over channel n ∈ NM , Pms,n is the power allocated by

SBS s ∈ Sm over channel n ∈ N S , and ηmu,n in Eq. (2.4b) and Eq. (2.4c) is the measure of SINR

defined in Eq. (2.5a) if u ∈ Um0 and Eq. (2.5b) if u ∈ Ums , respectively. If a UE u ∈ Um is to

associate with an MBS m (i.e., u ∈ Um0 ) on a certain channel n ∈ NM , the interference that the

UE u will experience is related to the transmission power allocated to the same channel by the

other MBSs m′ 6= m, which corresponds to Eq. (2.5a). On the other hand, if a UE is coupled with

an SBS on a certain channel n ∈ N S , it will sense the interference caused by all the other SBSs

on the network that have allocated transmission power to the same channel as in Eq. (2.5b). To
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ηmu,n =


G0,m
u,n Pm0,n∑

m′ 6=m∈MG0,m′
u,n Pm

′
0,n + ∆f ·N0

(2.5a)

Gs,mu,nPms,n∑
s′ 6=s∈Sm G

s′,m
u,n Pms′,n +

∑
m′ 6=m∈M

∑
s′∈Sm′ G

s′,m′
u,n Pm

′
s′,n + ∆f ·N0

(2.5b)

be specific, in Eq. (2.5b) the first term in the denominator measures the interference from other

SBSs in the same macrocell, whereas the second term measures the interference from all SBSs that

do not belong to the same macrocell. Note that the amount of interference to an SBS-associated

UE is not significant mainly due to the low transmission power of SBSs, and the penetration loss

of walls. For each UE that is associated with an MBS or SBS, its SINR should be greater than

or equal to the predefined threshold, ηthr, as in Eq. (2.4b) and Eq. (2.4c), respectively. The QoS

requirements of UEs that are associated with an MBS or an SBS should be satisfied according to

Eq. (2.4d) or Eq. (2.4e), respectively. The transmission power allocated to a certain channel cannot

exceed the power budget of an MBS or an SBS as in Eq. (2.4f) or Eq. (2.4h), respectively. Finally,

the aggregate transmission power of an MBS or an SBS cannot be larger than its power budget as

denoted by Eq. (2.4g) or Eq. (2.4i), respectively.

It is worth mentioning that solving P. 2.4 for MBS m and all active SBSs therein is not in-

dependent of that of others since each MBS m and all SBSs therein need to know the inter-tier

interference from the rest MBSs and SBSs, respectively. Therefore, a single or a set of computing

resource has to solve the network-wide power allocation problem, making the centralized approach

impractical for an online resource scheduling. In what follows, we transform the centralized power

allocation problem P. 2.4 into low-complex subproblems such that each subproblem can be quickly

solved in a distributed manner.

In order to build a distributed system we decompose the centralized problem P. 2.4 by using

the decomposition theory [46], and then transform it into low-complex subproblems that can be

independently solved by each BS. The power allocation problem P. 2.4 which is for both MBS m

and all SBSs therein (i.e., s ∈ Sm) already has two sets of easily-separable components. The first
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term in the objective function (2.4a) along with the following four constraints (2.4b), (2.4d), (2.4f)

and (2.4g) forms the MBS power minimization problem which is independent of that for SBSs, i.e.,

the remaining parts of the problem. Therefore, we can form the power allocation problem only for

MBS m as follows.

min
Pm

0

∑
n∈NM

Pm0,n (2.6a)

s.t.

ηmu,n ≥ ηthrXm
u,n, ∀n ∈ NM ,∀u ∈ Um0 (2.6b)

∆f log2(1 + ηmu,n) ≥ rmu Xm
u,n, ∀n ∈ NM ,∀u ∈ Um0 (2.6c)

0 ≤ Pm0,n ≤ PMmax, ∀n ∈ NM (2.6d)∑
n∈NM

Pm0,n ≤ PMmax. (2.6e)

What is left in P. 2.4 after taking P. 2.6 out is the power minimization problem for all SBSs

s ∈ Sm, where its objective is to minimize the sum of transmission power used by all SBSs in

macrocell m with the following constraints, (2.4c), (2.4e), (2.4h) and (2.4i). Minimizing the total

power usage is equivalent to minimizing each individually. Also, the set of constraints for each SBS

s is independent of that for the rest SBSs provided the transmission power of other SBSs are fixed.

As a result, we have the power allocation problem for each SBS s ∈ Sm as follows which can be

solved if the transmission power and the channel gain information of other SBSs are assumed to be

known.4

min
Pm

s

∑
n∈NS

Pms,n (2.7a)

s.t.

ηmu,n ≥ ηthrXm
u,n,∀n ∈ N S , ∀u ∈ Ums (2.7b)

∆f log2(1 + ηmu,n) ≥ rmu Xm
u,n, ∀n ∈ N S ,∀u ∈ Ums (2.7c)

4Please note that the proposed method does not directly solve P. 2.7 and thus, it does not really make such
assumptions. In fact, P. 2.7 is one of the steps that we make to design the distributed power allocation method which
will yield the global optimal solution without making the assumptions.
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0 ≤ Pms,n ≤ PSmax,∀n ∈ N S (2.7d)∑
n∈NS

Pms,n ≤ PSmax. (2.7e)

Although both P. 2.6 and P. 2.7 as they are cannot be further decomposed due to the coupling

constraints in (2.6e) and (2.7e), respectively, we can use the decomposability structure by forming

a Lagrangian of each to make both problems be decomposed. By relaxing (2.6e), the Lagrangian

of P. 2.6 is given as below.

min
Pm

0

∑
n∈NM

Pm0,n + λ(
∑

n∈NM

Pm0,n − PMmax) (2.8a)

s.t. constraints in: (2.6b), (2.6c), (2.6d),

where λ is a nonnegative Lagrangian multiplier. As a result, we have a Lagrange dual problem as

follows.

max
λ≥0

min
Pm

0

∑
n∈NM

Pm0,n + λ(
∑

n∈NM

Pm0,n − PMmax) (2.9a)

s.t. constraints in: (2.6b), (2.6c), (2.6d).

We assume that each BS has multiple processors or at least a single processor with the multi-

threading capability, each of which is dedicated to each channel for power update. The dedicated

processor or thread to each channel is called channel manager, which is in charge of controlling the

downlink transmission power of the assigned channel. At the lower level, the channel manager for

channel n ∈ NM solves the following power minimization problem if there is a UE u associated

with the channel (i.e., Xm
u,n = 1).

min
Pm
0,n

hm0,n(λ) = (1 + λ)Pm0,n (2.10a)

s.t. ηmu,n ≥ ηthr (2.10b)

∆f log2(1 + ηmu,n) ≥ rmu (2.10c)

0 ≤ Pm0,n ≤ PMmax. (2.10d)
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Then, the higher level problem forms a maximization problem over the Lagrange multiplier as

follows.

max
λ≥0

hm0 (λ) =
∑

n∈NM

hm0,n(λ)− λPMmax (2.11a)

Since the dual function hm0 (λ) is differentiable, the higher level problem can be solved with a

gradient method of which update method is given below.

λt+1 = [λt + αt(
∑

n∈NM

Pm∗0,n − PMmax)]+, (2.12)

where t is a nonnegative, integer-valued iteration count, α is a positive stepsize, and [·]+ = max{0, ·}

is a projection operator to the nonnegative orthant. The initial λ can be set to some non-negative

value, e.g., zero, and α can be a sufficiently small positive number; please refer to [46] for further

details on the step-size. Then, the dual variable λt will converge to the dual optimal λ∗ as t→∞

[46].

By taking a closer look at the lower-level problem P. 2.10, we can further simplify the power

allocation procedure, and find a simple method to solve it by an even more efficient way than the

decomposed ones. Since λ is nonnegative and common to all lower level problems, dropping the

1 + λ term from the objective function does not change the optimal decision value. For a power

minimization problem with an SINR constraint, the optimality is achieved when the constraint is

satisfied with equality, which is also true for the same problem with a QoS constraint. Therefore,

the solution of P. 2.10 can simply be found by:

Pm∗0,n = min{max{Pm(s)
0,n , P

m(q)
0,n }, P

M
max}, (2.13)

where P
m(s)
0,n and P

m(q)
0,n are the solutions that satisfy SINR and QoS requirements, respectively,

with equality.

In the same manner, we can derive the distributed power allocation method for each SBS. By

relaxing (2.7e) which is the coupling constraint in P. 2.7, we have the following Lagrangian.

min
Pm

s

∑
n∈NS

Pms,n + λ(
∑
n∈NS

Pms,n − PSmax) (2.14a)
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s.t. constraints in: (2.7b), (2.7c), (2.7d),

where λ is a nonnegative Lagrangian multiplier. At the lower level, the channel manager for

channel n ∈ N S solves the following power minimization problem if there is a UE associated with

the channel (i.e., Xm
u,n = 1).

min
Pm
s,n

hms,n(λ) = (1 + λ)Pms,n (2.15a)

s.t. ηmu,n ≥ ηthr (2.15b)

∆f log2(1 + ηmu,n) ≥ rmu (2.15c)

0 ≤ Pms,n ≤ PSmax. (2.15d)

Considering the optimality condition of the given power minimization problem P. 2.15, its

solution can be found by the following simple method as we did for each MBS channel manager.

Pm∗s,n = min{max{Pm(s)
s,n , Pm(q)

s,n }, PSmax}, (2.16)

where P
m(s)
s,n and P

m(q)
s,n are the solutions that satisfy SINR and QoS requirements, respectively,

with equality.

Although each channel manager considers and guarantees the per-channel power budget con-

straint (i.e., the maximum transmission power for the channel should not be greater than PMmax

or PSmax), it does not guarantee the per-BS power budget constraint (i.e., the total power use

over all channels should not be greater than PMmax or PSmax) is also satisfied. For example, for

n, n + 1 ∈ NM , having Pm0,n = PMmax and Pm0,n+1 = PMmax at the same time does not violate the

power budget constraint of each channel manager. However, that is not a feasible solution because

the sum transmission power over channels cannot exceed PMmax. Therefore, the upper level entity

should check whether the sum power constraint is violated or not. To this end, we use a simple

policy for the upper level entity that if the aggregate power budget constraint is violated, let all

active channel managers use the same transmission power.5 To be specific, for each MBS m of

which sum power constraint is violated, let each channel manager with an associated UE allocate

5Assigning the same power to all active channels provides close-to-optimal performance [47].
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the transmission power in the following manner, Pm0,n = PMmax/|Um0 |, where | · | is the cardinality of

a set ·. For each active SBS s of which sum power constraint is violated, let each channel manager

with an associated UE use the power as Pms,n = PSmax/|Ums |. On the other hand, as long as the sum

power constraint is satisfied, the upper level entity does not interrupt the power update procedures

at lower-level channel managers.

2.3.5 Convergence

By using the analytical framework for convergence presented in [48], we prove that the proposed

distributed power control algorithms in Eq. (2.13) and Eq. (2.16) converge to their corresponding

optimum. Since both algorithms share the same structure and do not interfere with each other,

we prove the convergence for an MBS m, i.e., Eq. (2.13). However, the following proof can be

easily applied to the case for any SBS s ∈ Sm, i.e., Eq. (2.16). To begin with, if the feasible power

region is empty, i.e., if the power allocation problem P. 2.6 is infeasible, the transmission power for

each channel converges (abruptly) to PMmax/|Um0 |. This is because each channel manager is forced

to use the equal transmission power when the sum power constraint is violated. In order to show

convergence of the proposed scheme for the case of having a non-empty feasible power region, what

follows is to transform the proposed power control method to the form of interference function,

which is one of the key components in convergence analysis proposed in [48].

Since we consider only the case that the feasible power region is nonempty, we can simplify

P. 2.6 by ignoring both constraints (2.6d) and (2.6e). After rearranging (2.6c), then, we get the

following problem P. 2.17.

min
Pm

0 �0

∑
n∈NM

Pm0,n (2.17a)

s.t. ηmu,n ≥ ηthr ·Xm
u,n, ∀n ∈ NM ,∀u ∈ Um0 (2.17b)

ηmu,n ≥ 2r̃
m
u ·Xm

u,n − 1, ∀n ∈ NM ,∀u ∈ Um0 . (2.17c)

Since the optimality of P. 2.17 is achieved when among the two constraints, (2.17b) and (2.17c), the

one that requires a higher transmission power is satisfied with equality, we can rewrite the problem



www.manaraa.com

25

as follows.

min
Pm

0 �0
0 (2.18a)

s.t. ηmu,n = qmu,n, ∀n ∈ NM ,∀u ∈ Um0 , (2.18b)

where qmu,n = max{ηthr · Xm
u,n, 2

r̃mu ·Xm
u,n − 1}. The problem is always feasible by assumption, and

the optimal power for each active channel is given by solving the equality constraint Eq. (2.18b).

Therefore, we can find the power update method directly from P. 2.18 after plugging in the SINR

expression, Eq. (2.5a), to ηmu,n. Then, the distributed power update method for an active channel

n of MBS m which is associated with UE u becomes: Pm0,n[t+ 1] =
qmu,n

G0,m
u,n

(
∑

m′ 6=m∈MG0,m′
u,n ·Pm

′
0,n[t] +

∆f ·N0). It is worth mentioning that this is equivalent to the power update method in Eq. (2.13)

provided the feasible power region is nonempty and both the channel gain and the amount of

interference are reported from UE.

According to [48], an iterative power update method, in general, is given by p[t+ 1] = I(p[t]),

where I(·) is interference function.6 We use Im0,n(·) to indicate the interference function for an active

channel n of MBS m. The interference function is standard if it satisfies positivity, monotonicity

and scalability properties for all nonnegative power vectors. Also, we use an overloaded notation

P0 to indicate the transmission power of all MBSs. The positivity property, Im0,n(P0) > 0, is

always satisfied because of the strictly positive background noise—even when P0 = 0, we have

qmu,n

G0,n
u,n

∆f ·N0 > 0. The interference function also satisfies the monotonicity property, i.e., if P+
0 � P0,

then Im0,n(P+
0 ) ≥ Im0,n(P0). Let P+

0 = (1 + ε)P0 for ε ≥ 0. Then, we have

Im0,n(P+
0 ) = Im0,n((1 + ε)P0)

= Im0,n(P0) +
qmu,n

G0,m
u,n

(ε
∑

m′ 6=m∈M
G0,m′
u,n · Pm

′
0,n)

≥ Im0,n(P0),

6Note that the notation I in Section 2.3.5 is different from the one in Section 2.3.3.
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from which we can conclude that the monotonicity property is always satisfied. Finally, the pos-

itivity property and convexity of the interference function imply scalability, i.e., for all α > 1,

αIm0,n(P0) > Im0,n(αP0).

Since the interference function Im0,n(·) satisfies the three properties, the proposed power update

method is called standard power control algorithm [48]. Due to the convexity of the problem P. 2.17

(or P. 2.6), there exists an optimal power allocation vector, meaning that the proposed power update

method has a fixed point. Then, the fixed point is unique by [48, Theorem 1]. Finally, by using

[48, Theorem 2] we conclude that the proposed power update method converges to a unique fixed

point for any initial power vector as long as the feasible power region is not empty. �

2.3.6 Overall Procedure

In this section, the overall procedures of the proposed scheme is given, i.e., the BS association

and channel assignment in Stage 1 and the power allocation in Stage 2, as a summary of the current

section. At the beginning of Stage 1, all BSs transmit pilot signals over the entire channels to which

they have an access. UE u senses the signal, calculates the per-channel cost, and transmits the cost

vector cmu to MBS m. Then, MBS m determines the UE-BS association and channel assignment

by running Algo. 1. The decision made by MBS m is broadcasted to all SBSs (∀s ∈ Sm) and all

UEs (∀u ∈ Um). Each active MBS channel manager with an associated UE runs Eq. (2.13) to

determine the downlink power, and the UE sends the measured channel gain and interference back

to the channel manager. This power allocation procedure iterates until the change of the power

becomes less than the given threshold.Each active SBS channel manager with an associate UE runs

the same procedure except that it runs Eq. (2.16) to determine the downlink transmission power.

While each active channel manager tries to determine the transmission power, each BS checks if

the sum power exceeds the power budget. If it does, the BS stops all active channel managers and

lets them use the same power, Pm0,n = PMmax/|Um0 | (in case of MBS) and Pms,n = PSmax/|Ums | (in case

of SBS) for downlink communication. If it does not, the BS waits until all active channel managers

finish their power allocation procedures.
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2.4 Evaluation

We implemented and simulated the proposed algorithm along with others for comparison on

top of MATLAB [49] and CVX [50]. The following Section 2.4.1 describes the network configu-

rations and parameter settings which are common to all scenarios considered in this section. In

Section 2.4.2 we show that for Stage 1, the optimality gap between the proposed solution (i.e.,

Algo. 1) and the optimal BS association and channel assignment (i.e., P. 2.2) is small. What fol-

lows is the performance evaluation and comparison of the proposed scheme to others in terms of

the power consumption on different networks, i.e., single-cell, small-scale and large-scale networks,

in Section 2.4.3, Section 2.4.4 and Section 2.4.5, respectively.

For comparison to the optimal solution, we introduce a new metric, DX(·), to measure the

difference in the Stage 1 decision between a certain method and the optimal solution, which is

defined as follows: DX(<method>) = ||X∗optimal − X∗method||1, where ||Y ||1 =
∑
∀y∈Y |y|. Here,

X∗optimal is the optimal solution found by solving P. 2.2, whereas X∗method is the optimal solution

found by solving the corresponding problem for <method>. In other word, DX(<method>) counts

the number of entries that do not match between the two solutions.

In addition, we have implemented one more scheme, called SSSF (Strongest Signal Strength

First) for comparison. In contrast to the proposed method which considers both the channel

gain and the service demand, SSSF takes only the signal strength into account when making BS

association and channel assignment. It is easy to implement SSSF or any similar variations due to

the general structure of the Stage 1 problem. In contrast to the proposed method which minimizes

the cost values, SSSF maximizes the sum of the benefit which is equal to the channel gains. After

replacing cm with the benefit, we can simply replace the objective function P. 2.2 with the benefit-

sum maximization problem. We have directly solved SSSF by using the MATLAB (M)ILP solver

which uses Branch-and-Bound algorithm.



www.manaraa.com

28

2.4.1 Network Configuration

There are M MBSs that are regularly deployed with keeping the inter-cell distance of 600 m

among adjacent ones. Each MBS has 300 m of coverage, and is overlaid by S indoor SBSs and U

UEs. We have used a Uniform distribution for locating SBSs and UEs. A UE is located indoor

if it is placed within the coverage of a SBS which is 30 m. The QoS requirement of each UE is

randomly drawn from a Uniform distribution. The total BS transmission power of MBS and SBS

is 46 dBm (40 W) and 20 dBm (100 mW), respectively [42].

The channel model from [42] is used, which includes the distance dependent path-loss, pene-

tration loss (when applicable), multipath fading and lognormal shadowing. The path-loss between

a BS and a UE is listed below. The unit of path-loss is dB, and R is the distance between two

entities in the unit of meter.

� MBS and an indoor UE: 15.3 + 37.6log(R) + Low,

� MBS and an outdoor UE: 15.3 + 37.6log(R),

� SBS and its associated UE: 38.46 + 20log(R), and

� SBS and an outdoor UE:

max{38.46 + 20log(R), 15.3 + 37.6log(R)}+ Low,

where Low is the penetration loss of an outdoor wall, which is 20 dB. In case of the path-loss

between an indoor UE and an SBS located in a different building, the penetration loss gets doubled.

The Rayleigh fading model is used to capture the multipath effect, and the standard deviation of

lognormal shadowing is as follows.

� MBS and an indoor UE: 10 dB,

� MBS and an outdoor UE: 10 dB,

� SBS and its associated UE: 4 dB, and

� SBS and an outdoor UE: 8 dB.
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In addition, for a fair comparison to [36] we set ∆f = 180 kHz and per-Hz noise power N0 = 10−13

W in accordance with the parameters declared therein.

2.4.2 Optimality Gap in Stage 1

As aforementioned in Section 2.3.3, the Algo. 1 iteratively solves P. 2.3 and recovers binary

solutions instead of directly solving P. 2.2 to lower the computational complexity. Due to the

relaxation on binary variables, Algo. 1 may yield a suboptimal solution to P. 2.2 which possibly

affects the power consumption in the subsequent Stage 2 for power allocation. In order to check

by how much the solution of Algo. 1 is deviated from the optimal solution to P. 2.2, we have

implemented and solved P. 2.2 by using the MATLAB (M)ILP solver which uses Branch-and-Bound

algorithm. Each data point in both Fig. 2.1 and Fig. 2.2 is an average of 20 runs of randomly-

generated scenarios, where there are 4 SBSs on an MBS. The number of UEs in a macrocell is set

to 10, 20, · · · , 50. Also, 95% of the confidence interval is marked on each data point in Fig. 2.1.

Fig. 2.1 shows the (normalized) minimum cost found by running Algo. 1 and P. 2.2, referred to as

Proposed and Optimal, respectively, in the figure. For each different number of UEs on a macrocell,

the proposed method results in a close-to-optimal objective value. In order to take a closer look at

the difference in the two objective values, Fig. 2.2 shows the error ratio e = |p̂∗ − p∗|/p∗, where p̂∗

and p∗ are the normalized minimum cost found by running Algo. 1 and solving P. 2.2, respectively.

As it can be seen in Fig. 2.2 the error ratio becomes stable as the number of UEs increases and

does not exceed 0.008. That is, the proposed Algo. 1 yields a sub-optimal solution to P. 2.2 with a

small optimality gap.

In what follows, we show the power consumption of the proposed method along with others for

comparison, and show the effect of the sub-optimality on the power consumption.
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Figure 2.1: Minimum cost in Stage 1 for the optimal and the proposed BS/channel assignment

method.

2.4.3 Single-Cell Networks

In addition to comparing to the optimal solution and SSSF, we compare the performance of the

proposed method to [36], which is denoted by Abdelnasser in Fig. 2.4 and Fig. 2.5. In contrast to

the proposed scheme which assumes an independent channel deployment between different types

of BSs, [36] shares all available channels between an MBS and all SBSs therein, called co-channel

deployment. The proposed resource scheduling scheme in this chapter allocates an optimal power

to each channel by taking both the channel gain and the QoS requirement of an associated UE

into account, while [36] allocates an equal power to all channels in use. The proposed association
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Figure 2.2: Error ratio of the minimum cost in Stage 1 for the proposed BS/channel assignment

method.

scheme in this chapter allows UEs to be dynamically offloaded to SBSs for capacity enhancement

(i.e., open access mode), whereas [36] does not (i.e., closed access mode). Since the work in [36]

considers only a single MBS, we set up a similar network as Fig. 2.3, where there is a single MBS

on the network with 4 SBSs and 20 UEs therein. Please note that due to this limitation, [36] is

not used for performance comparison in the following Section 2.4.4 and Section 2.4.5. In this

simulation, we have DX(proposed) = 0 and DX(SSSF) = 6.
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Figure 2.3: Network scenario for a single-cell network.

2.4.3.1 Power Consumption

Fig. 2.4 shows the overall power consumption, i.e., the total power used by an MBS and SBSs on

the network, for the four different schemes. As it can be seen in Fig. 2.4, the work in [36] uses more

power than the proposed method as well as Optimal and SSSF. In contrast to the proposed method

in this chapter that dynamically manages the interference, [36] takes a conservative approach. In

[36], when a UE is associated with an MBS, the MBS calculates the maximum allowable interference

on the allocated channel for the UE, and then assigns the maximum power to the channel which

is PMmax divided by the number of channels in use. On the other hand, the proposed scheme in
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Figure 2.4: Overall power consumption for a single-cell network.

this chapter as well as both Optimal and SSSF allocates the minimum power to each channel while

satisfying both SINR and QoS requirements for the associated UE. Therefore, our proposed work

much outperforms [36] in terms of the power consumption especially when the amount of downlink

traffic is small. Since we have DX(proposed) = 0, the proposed scheme results in the optimal

solution. SSSF is also able to dynamically adjust the transmission power, and thus, its power

usage gradually increases as the average service demand increases. However, our proposed scheme

consumes less power than SSSF. That is, considering both channel gain and QoS requirements

results in a more power-efficient solution than taking only the signal strength into account.
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Figure 2.5: QoS satisfaction ratio for a single-cell network.

2.4.3.2 QoS Satisfaction Ratio

The Fig. 2.5 shows the QoS satisfaction ratio which is the ratio of the number of UEs with

their QoS satisfied to the total number of active UEs on the network. As it can be seen in the

figure, the satisfaction ratio of the work in [36] starts to drop when the mean QoS becomes larger

than 2 Mb/s. On the other hand, the other methods successfully satisfy the QoS requirements of

all UEs until the mean QoS is 4.5 Mb/s. Due to the lack of freedom in controlling the downlink

transmission power, the work in [36] always allocates the fixed transmission power to all active

channels. This inflexibility in power allocation may not be efficient, because it allocates more than
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necessary amount of power to the UEs with high channel gains, while failing to satisfy the QoS

requirement of UEs with low gains. The proposed method and the Optimal, on the other hand, has

a higher level of freedom in power control than [36], because each channel manager allocates the

minimum power level that satisfies both SINR and QoS requirements of the associated UE. When

the average per-UE QoS is 5 Mb/s, the QoS satisfaction ratio of SSSF drops sharply, while it is not

the case for both the proposed and optimal scheme even though both experience a small amount

of degradation.

2.4.4 Small-Scale Networks

We have evaluated the proposed method on a small-sized network where there are 3 MBSs on

the network as shown in Fig. 2.6. The locations of these three MBSs form an equilateral triangle,

meaning that the distance from any MBS to either of the rest two is the same. Each MBS is overlaid

by 4 SBSs and 20 UEs. In this simulation, we have DX(proposed) = 0 and DX(SSSF) = 18.

Therefore, the performance of the proposed scheme will be exactly same as that of Optimal.

2.4.4.1 Power Consumption

The Fig. 2.7 shows the power consumption of the three methods, the proposed, optimal and

SSSF, with respect to different mean per-UE QoS. The overall power use is the sum of transmission

power used by all macro and smallcell BSs on the network. Although it is not shown in the figure,

the difference between the overall power use and the aggregate MBS power use is trivial, meaning

that MBSs use most of the power consumed in the network. This is because an MBS associates

with much larger number of UEs than SBSs due to the long transmission range and a larger power

budget. Thus, a UE associated with an MBS may have a small channel gain, making the MBS use

a high transmission power to satisfy the UE’s SINR and QoS requirement. On the other hand, an

SBS has a small number of associated UEs with a short distance to each. Therefore, it does not

need much power to satisfy the associated UE’s QoS demand and SINR requirement. The overall
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Figure 2.6: Network scenario for a small-scale network.

power consumption becomes saturated when the mean per-UE QoS demand is approximately 5

and 6 Mb/s, respectively, for SSSF and both the proposed and optimal schemes.

2.4.4.2 QoS Satisfaction Ratio

QoS satisfaction ratio is the number of UEs with their QoS satisfied to the total number of

active UEs on the network. As it can be seen in Fig. 2.8, the QoS requirements of all UEs are

fully satisfied when the mean per-UE QoS is equal to or less than 4 or 4.5 Mb/s, respectively, for

SSSF or both the proposed and optimal. Then, the QoS satisfaction ratio drops as the per-UE

demand becomes larger. It is noteworthy that for the first one or two drops of the ratio, SSSF
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Figure 2.7: Overall power consumption for a small-scale network.

shows a steeper decline than the rest two. Since it already uses much power when the mean per-UE

QoS is 4 Mb/s, further increase in QoS causes a significant drops in the QoS satisfaction ratio. The

increase in the QoS requirement will eventually let all BSs use the maximum transmission power,

which increases the interference level. Failing in achieving the satisfaction ratio of 1 means there

is at least one BS whose total power budget constraint is violated. Note that the violation of the

power budget constraint makes a BS use an equal power allocation for all active channels. Since the

equal power assignment takes away the freedom in power control from a BS, any further increase

of QoS requirements will yield more UEs with their QoS unsatisfied. UEs in a SSSF network suffer
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Figure 2.8: QoS satisfaction ratio for a small-scale network.

much more QoS degradation as the average QoS demand increases compared to both the proposed

and the optimal schemes.

2.4.4.3 Convergence

The speed of convergence determines whether the proposed algorithm is suitable for an online

processing or not. We have evaluated the speed of convergence with two different setting as follows,

while keeping the rest network configurations the same. One is synchronized power update and the

other is unsynchronized. In the synchronized power update setting, all active channel managers

update their power at the same time. In other words, on iteration t it is guaranteed that all
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Figure 2.9: Convergence of the iterative power allocation procedure for a small-scale network.

the active channel managers on the network have fished their power update procedures for the

previous t − 1st iteration. On the other hand, the unsynchronized power update does not assume

the synchronized power update. For example, when a channel manager runs its tth power update,

it is possible that there are some channel managers that have not finished their t− 1 iterations (or

even the ones before the t−1st iteration). In order to emulate the unsynchronized updates, we have

added some random delay into the power update method. The Fig. 2.9 shows the convergence

behaviors of the power update method under different settings. As expected, the unsynchronized

setting requires more iterations. In this small-scale network, every MBS has two effective interfering
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cells,7 both of which are 600 m away. Therefore, when the update procedures are synchronized, all

BSs will converge at the same time on a small-scale network. Note that this is not the case for a

large-scale network where each cell is exposed to the different number of effective interfering cells.

2.4.5 Large-Scale Networks

We also carried out an evaluation on a large-scale network where there are 30 MBSs, each of

which is overlaid by 4 SBSs and 20 UEs. MBSs are placed in a shape of a bee hive where there

are 5 rows of MBSs with 6 MBSs per row as in Fig. 2.10. The rest configurations remain the

same as before. In this simulation, we have DX(proposed) = 22 and DX(SSSF) = 358. The

proposed method has failed to find the optimal solution in BS association and channel assignment

for this network for having a nonzero value of DX(proposed). However, since the difference is not

significant, the power consumption in Stage 2 is expected not to be deviated much from that of the

optimal method.

2.4.5.1 Power Consumption

The power consumption of BSs on a large-scale network is illustrated in Fig. 2.11, which has

a similar trend to Fig. 2.7. It is worth mentioning that although the proposed method has a

(trivially) different Stage 1 solution than that of the optimal method, it is hardly seen on the power

consumption. In both small- and large-scale cases, the overall power use of both the proposed and

optimal becomes saturated around 6 Mb/s of the mean QoS. Also, both methods outperform SSSF

in terms of power consumption, indicting that considering both channel gain and QoS requirement

is more energy-efficient than the one considering only the received signal strength.

2.4.5.2 QoS Satisfaction Ratio

Each cell on the large-scale network experiences more interference than that on the small-sized

network for the increased number of effective interfering cells. Fig. 2.12 shows the QoS satisfaction

7A cell is an effective interfering cell to another if the interfering cell is close enough to the interfered cell. For
example, if an interfering cell is 600 m away, it is an effective interfering cell. However, a cell which is 600 km away
is not an effective interfering cell, because the interference from the cell is too weak.
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Figure 2.10: Network scenario for a large-scale network.

ratio of UEs on the large-sized network. As it can be seen in the figure, the ratio starts to drop

when the mean QoS becomes larger than 2 and 3.5 Mb/s, respectively, for SSSF and both the

proposed and optimal, which was not the case on the small-scale network. This is mainly because

of the increased level of interference on the large-scale network. Having more effective interfering

cells on the network increases the level of interference to each cell, and thus results in a lower energy

efficiency. The performance degradation of the proposed method for having a non-optimal solution

in Stage 1 can be seen in Fig. 2.12. As the average QoS requirement becomes larger than 8 Mb/s,
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Figure 2.11: Overall power consumption for a large-scale network.

the proposed method results in a slightly lower QoS satisfaction ratio than the optimal method,

but the degradation is trivial.

2.4.5.3 Convergence

Due to the increased number of interfering cells, the iterative power update procedure on the

large-scale network takes a couple of more steps to converge as shown in Fig. 2.13. Still, the

network reaches convergence in 6 or 7 iterations even when the power update is not synchronized.

This fast convergence behavior on the large-scale network proves that the proposed scheme scales

well with the network size, making it suitable for an online resource scheduling.
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Figure 2.12: QoS satisfaction ratio for a large-scale network.

2.5 Conclusion

In this chapter, we have proposed a distributed and energy-efficient association and resource

scheduling scheme for two-tier HetNets. We have formulated an optimal user association problem

and then proposed a resource allocation algorithm in such a way that they can be solved efficiently

by an iterative, distributed method. To be specific, we have formulated an optimal user associa-

tion and channel assignment problem for Stage 1 and then applied a relaxation and an iterative

adjustment method so as to make the problem tractable and low-complex. In addition, we have

transformed the proposed power assignment problem into a set of lightweight distributed proce-
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Figure 2.13: Convergence of the iterative power allocation procedure for a large-scale network.

dures by using the decomposition structure for Stage 2. The comparison results and the evaluation

studies on small-/large-scale networks show that the proposed scheme maintains a low power con-

sumption while satisfying users’ QoS requirements with a low computational load, which proves

that the proposed scheme can be used for an online resource scheduling for HetNets.
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CHAPTER 3. COST AND ENERGY-EFFICIENT RESOURCE

OPTIMIZATION FOR C-RAN BASED NEXT GENERATION CELLULAR

NETWORKS

3.1 Summary

As network operators invest more and more in infrastructure to keep up with the ever-increasing

traffic demand, it has become important for them to operate networks in such a way that they can

maximize profit while minimizing cost. Such an expansion in network facilities also increases power

consumption which has a negative impact on both environment and revenue. In this regard, the

cloud radio access network (C-RAN) which is a promising next-generation network architecture

has gained much attention. Recently, the centralized computing and being capable of resource

re-configuration/virtualization help to schedule the network resource in a cost-effective manner.

In this chapter, we study an optimal resource allocation for C-RANs to maximize profit while

minimizing power consumption. Moreover, by allowing network operators to share their resources

through traffic offloading, we show that the profit can be further increased. The proposed multi-

stage stochastic programming model makes a robust optimal decision that effectively responds to

uncertainties from users’ mobility and service demand. Evaluation and comparison results show

that the proposed approach is highly cost-effective under network uncertainties and with traffic

offloading.

3.2 Introduction

As we move towards the next generation network (5G), we have seen some meaningful progress

made for it. Among those, the centralized/cloud radio access network (C-RAN) [51] [52] which is a

recently-proposed cellular network architecture is considered to be one of the key enablers for 5G.

As shown in Fig. 3.1, C-RAN consists of a BBU (baseband unit) pool, RRHs (remote radio heads)
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Figure 3.1: C-RAN consists of BBU pool, RRHs and fronthaul links.

and fronthaul links that connect them via high-speed links such as optical transmission networks

[53]. C-RAN shifts the majority of the functionalities from base stations (BSs) to the central

cloud-computing resource pool (i.e., BBU), which is in contrast to the conventional belief that BSs

are supposed to be in charge of MAC/PHY functions. To this end, the BBU pool in the cloud

platform performs most of the tasks, e.g., baseband signal processing and transmission scheduling,

making RRHs low-complex and low-cost. By virtue of the Software-Defined Radio and Network

Function Virtualization, C-RANs can become more scalable, reusable and easily configurable. The

centralization enables an enhanced cooperation/coordination between RRHs, and also the reduced

cost of RRHs allows mobile network operators (MNOs) to densely deploy them (i.e., close to end-

users) so that high transmission rates can be achieved with low transmission power. In the long

run, C-RAN is expected to reduce the total cost of ownership, i.e., the sum of CAPEX (capital

expenditure) and OPEX (operational expenditure), which makes it more attractive.

In particular, the heterogeneous C-RAN (H-CRAN) [54] which is an advancement to or variation

on C-RAN is more attractive for the following reasons. By combining the C-RAN architecture with

the conventional MBSs (macro base stations), H-CRANs can lead to a gradual transition from 4G

to 5G. MBSs and RRHs, respectively, can be dedicated to handling control message exchanges
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and high-speed data transfer, the separation between the control plane and data plane becomes

straightforward. In addition, due to the large coverage of MBSs, there is no need to densely deploy

RRHs as shown in Fig. 3.5. In fact, highly-populated RRHs may cause control message overflow

(e.g., due to frequent handovers [53]), increase the complexity of the interference management, and

leave many of them under-utilized [55]. Such heterogeneous structure provides a new opportunity

for resource optimization since it takes advantage of the centralized structure of C-RAN with low

complexity due to the reduced number of RRHs.

In this chapter, we focus on how to operate H-CRAN in a profitable and energy-efficient manner

by scheduling network resources under uncertainty. In contrast to the conventional approaches

focusing on either throughput maximization or energy minimization, only a few studies have paid

attention to profit maximization from an operator’s perspective [56] [57] [58] [59]. It has recently

been noticed that compared to the increasing investment that MNOs make to upgrade their network

infrastructure, the average revenue per user has been small [53] [59]. Also, power consumption

from the expanding infrastructure accounts for a large share of both increasing OPEX and carbon

footprint from Information and Communication Technology. Thus, there is a urgent need for

studying a cost-effective operation of the networking system in preparation for the upcoming 5G.

In this regard, the overall goal in this chapter is to maximize the revenue, while minimizing the

power consumption.

It is worth mentioning that the new structure of C-RAN and H-CRAN brings not only new

opportunities but also new challenges. To effectively schedule the resources in C-RAN, the uncer-

tainties brought by frequent changes in users location and their service demand must be carefully

considered since both affect the overall performance to a large degree. To be specific, when there

are short-range BSs deployed, the connectivity (or accessibility) between users and such BSs is

largely affected by their geographic locations at the moment. In addition, varying users demand

causes the traffic load in certain service area to change significantly [60] over time. Therefore, it is

important to take both uncertainties into account at the same time for resource scheduling, which

has not been carefully studied yet.
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Figure 3.3 In C-RAN, RRHs are densely deployed
to provide coverage, causing severe interference.

Figure 3.4 In H-CRAN, MBSs provide coverage,
while heavy traffic is offloaded to RRHs.

Figure 3.5: Comparison between C-RAN and H-CRAN.

Another challenge in C-RAN is that some resources need to be treated separately from the rest

in terms of the timescale of scheduling (or scheduling frequency). This is a critical issue since it

might be different from what has been done thus far. For conventional cellular networking systems,

it is important to optimally schedule networking resources such as channel assignment, transmission

power, interference and user-BS association, and all of these are handled by the MBSs that UEs

(user equipments)1 are directly attached to at the moment. Since BSs makes decisions locally, online

or dynamic resource allocation can be done without any significant delay. In C-RAN, on the other

hand, Virtual Base Stations (VBSs) are built on the cloud platform by means of Virtual Machines

(VMs), resulting in the increased system utilization, while decreasing CAPEX [61]. Considering

that one or a set of VBSs on BBU is paired with an RRH to process the signals from/to it, frequent

resizing of VBSs may bring a significant delay to traffic delivery2. In this regard, for the C-RAN

resource scheduling, such resources need to be identified and separately handled from the rest that

1In this chapter, UE is used interchangeably with user.
2Re-configuring a VM, in general, is followed by adjusting a set of hardware resources, e.g., computing/processing

power, disk storage, memory and network bandwidth, as well as installing an operating system and software packages
so that a VM can be independently and fully functional. Also, an additional delay is introduced for the fronthaul
link.
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are applicable to online scheduling; otherwise, being unaware of such characteristic may yield an

inefficient resource usage and service outage.

In this chapter, we propose an optimal resource scheduling method for H-CRAN under network

uncertainties. In order for an MNO to maximize the profit, the proposed method optimizes a set of

networking resources, including the partitioning of BBU pool for RRHs, the channel partitioning

between different types of BSs, the association between BSs and users, and the channel assignment

for each user. The fronthaul constraint and the power consumption are taken into account to make

the proposed model to be more practical and energy-efficient, respectively. By using a stochastic

programming (SP) approach, the proposed model can effectively react to the uncertainties from

the users’ mobility and their varying service demand. For the resources that are not suitable for

frequent scheduling, the proposed model finds one-fits-all, robust solutions; for the rest resources, on

the other hand, it finds an optimal solution in an online manner. Also, we propose a way to achieve

a profitable cooperation between different MNOs by allowing users to perform traffic offloading

(or roaming) between multiple MNOs [56] [57] [62] [63] when there is not enough resource left on

their primary MNO’s network. The evaluation studies compare the proposed model to others that

do not or partially consider the uncertainties, and show that the proposed model can achieve a

higher profit than the rest while minimizing both the power consumption and service outage ratio.

Also we show the promising effect of the cooperation among different MNOs by means of traffic

offloading on the profit.

In this study, we make the following major research contributions. First of all, we propose a

cost and profit model with which we study how to maximize the overall profit. Such an approach

has received little attention in the literatures. However, it is important in that compared to the

conventional throughput maximization or energy minimization point of view, the profit maximiza-

tion approach provides a perspective on how a network operator, i.e., the actual operator of the

network, would schedule the resource use. Secondly, compared to the previous studies focusing on

optimizing either the BBU pool and forming VBSs or the networking resources (e.g., associating

UEs with MBS/RRH and assigning a channel to each UE), we formulate the complete resource
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chain of H-CRAN/C-RAN to further increase the utilization of the cloud-based RANs compared

to the previous one-sided approaches. Also, we propose a resource optimization framework which

is aware of both the network uncertainties and the different characteristics of C-RAN resource

components with respect to the different timescales in scheduling the resources. The former is

important especially when utilizing the short-range base stations, while the latter is critical to the

new challenges faced in C-RAN.

The remainder of this chapter is organized as follows. Section 3.3 introduces the overview

of the problem, network model and essential elements for formulating an SP. In Section 3.4, we

formulate the optimal resource allocation problem by means of multi-stage SP. Section 3.5 presents

the evaluation results, and finally, Section 3.6 concludes this chapter.

3.3 Problem Description

3.3.1 Problem Overview

In this chapter, we study optimal resource scheduling and sharing for H-CRAN under uncer-

tainty, where the objective is to maximize profit while minimizing power consumption. We assume

that there are multiple MNOs operating in the given region, and we focus on MNO1 along with its

resources and subscribers. Without loss of generality, we assume there are two MNOs, but it can

be easily extended to the case with multiple MNOs. In order to avoid confusion in naming different

type of BSs, we use the following notations:

� MBS for conventional high-power macro base station operated by MNO1,

� RRH for remote radio head operated by MNO1, and

� AP for access point3 operated by MNO2, but they are also accessible to MNO1’s subscribers;

in what follows, base station (BS) refers to any or all of the above three.

3Note that an AP can be RRH, MBS, low-power BS, 802.11-type AP, and so forth depending on the MNO2’s
network model.
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Figure 3.6: Illustration of the proposed resource scheduling method, highlighting the set of decisions

to be made. All UEs shown in the figure are MNO1’s subscribers.

In the proposed method, MNO1 makes the following seven decisions from (D1) to (D7) as

illustrated in Fig. 3.6. (D1) MNO1 partitions its BBU pool (i.e., the central computing resource),

forms VBSs and assigns the VBSs to RRHs. Also, (D2) it divides the available, orthogonal channels

into two disjoint sets, one for MBS and the other for RRHs; as a result, there is no cross-tier

interference. During operation, (D3) UEs receive service from either MBS or RRH, and (D4) the

channel assignment for each UE is determined. In addition, one MNO is allowed to collaborate

with another in a way that MNO1’s subscribers can offload their traffic to the other MNO. To do

so, (D5) MNO1 has to reserve a certain amount of computing resource at MNO2 in advance. For

MNO1, when the aggregate service demand exceeds the network capacity, (D6) it allows UEs to

offload their traffic to MNO2’s APs, and at the same time (D7) which channel to use is determined.

The aggregate profit to MNO1 is revenue minus the sum of both cost and penalty. The revenue

increases in the subscribers’ data usage, i.e., number of bits transferred and processed for the

subscribers. On the other hand, MNO1 has to pay the cost when it reserves computing resource at

MNO2 (i.e., resource reservation fee) and when its subscribers offload their traffic to MNO2’s APs

(i.e., offloading cost). Also, penalty is charged to MNO1 whenever there is unmet demand.

In order to effectively responds to the uncertainties of our interest, i.e., users’ mobility and

their service demand, we formulate the problem in a SP [76] [77] model. SP is a mathematical
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programming tool in which some of the parameters are uncertain and described by their probability

distributions. In contrast to other optimization problems that eliminate uncertainties by assuming

constant values for uncertain parameters, SP yields a more robust and practical solution since it

takes possible realizations of such parameters into account. As a result, the problem of resource

over-/under-provisioning is minimized. Also, the separation of stages and recourse actions [76] in SP

result in a structured problem formulation and robust solutions against uncertainties, respectively.

In this chapter, realizations of an uncertainty parameter refer to the possible values that the

parameter can take on, and scenario refers to the set of such realizations. One scenario includes

multiple realizations, one for each uncertainty parameter, and the set of such scenarios is called

scenario tree.

3.3.2 Network Model and Assumptions

On the network is an MBS overlaid by |M1| RRHs. The network is operated by MNO1 which

has |U| number of active subscribers. RRHs are sparsely deployed4 in a planned manner such that

there is no intra-tier interference. Each RRH is directly connected to the BBU pool via a wired

fronthaul link with limited capacity [78]. The MBS provides coverage, meaning that each UE can

always access it; yet, it is not always the case for the wireless links between UEs and RRHs. On the

same region, another operator, MNO2, has its own APs installed. Both operators have a limited

number of non-overlapping channels each, and thus, there is no inter-network interference. Each

UE has two radio interfaces, one for MNO1 and the other for MNO2. Service demand (i.e., downlink

traffic rate) of each UE is uniform random with a known mean value.

We assume that MNO1 has an access to historical data (or has a knowledge of known patterns

[61]) with respect to UEs mobility. In particular, what we are interested in is the accessibility

information between UEs and BSs. During operation, a UE periodically listens to the pilot signals

from nearby BSs and transmits the list of accessible BSs (i.e., MBS, RRH or AP) in the uplink.

4In H-CRAN, the coverage can be provided by MBS while high spectral efficiency can be achieved by RRHs. In
fact, a dense deployment of low-power BSs may not be efficient since many of them are often under-utilized [55], and
it also increases both interference and energy consumption [60].
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Network resource scheduling interval

Stage-2 Stage-3Stage-1

Figure 3.7: In this work, we assume a slotted time frame. The Stage-1 carries out a long-term

resource allocation, while for each time slot, both Stage-2 and Stage-3 decisions are made to

provide service to users on a small time scale.

After accumulating such information, an MNO can compute the probability that a UE is accessible

to a particular BS during a certain period of time, e.g., a day. We also assume an equal per-channel

transmission power at a BS, which provides close-to-optimal performance [36][47]. The entire BBU

pool is assumed to be continuous and fractional partitioning is allowed. A VBS is assigned to a

single RRH, and it cannot be shared among multiple RRHs.

Notations are summarized in Table 3.1, while the others are defined as needed. For indexing

purpose, u, i1, i2, m1, m2 and s are used to indicate a UE, RRH, AP, MNO1’s channel, MNO2’s

channel and scenario, respectively. Vectors are in bold and lowercase, e.g., x, π and 1. Matrices

are in uppercase, bold letters, e.g., As and Bs. Uppercase letters in calligraphic font indicate sets

e.g., I1 and M2.

3.3.3 Decisions and Timeline

Time is partitioned or slotted as shown in Fig. 3.7, where network resource scheduling is carried

out at the beginning of each time slot. At the beginning, Stage-1 is executed, and Stage-2 and

Stage-3 runs in sequence on each time slot. The first stage, Stage-1, is for network planning,

Stage-2 is for service provisioning, and the last stage, Stage-3, is for a recourse action. For

Stage-1, MNO1 makes the following decisions that will last for a while without knowing both the
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UEs’ locations and their service demand. The BBU pool is partitioned to form VBSs for RRHs,

i.e., (D1). Since VBSs are formed by means of VMs, reconfiguring or resizing VMs can cause a

significant delay which might be intolerable for cellular networking systems. Channel partitioning,

i.e., (D2), also belongs to Stage-1 since it may cause a significant delay because of the heavy

computation load which will be discussed in Section 3.4. Also, reserving MNO2’s computation

resource, i.e., (D5), should be done at Stage-1 since its availability cannot be expected in advance.

Such decisions can be made periodically, but with relatively long intervals in-between.

On the other hand, the Stage-2 and Stage-3 decisions are repeatedly made on a short time

scale, e.g., duration of a resource block in 4G LTE, so that an MNO can satisfy users’ QoS as

much as possible against the frequently-changing UEs’ mobility and their service demand. Once

the location and service demand of UEs become known at the beginning of Stage-2, the proposed

method associates each UE with either an MBS or RRH (if connected), i.e., (D3), and also maps UEs

to available channels to provide service, i.e., (D4). If the aggregate service demand at the moment

exceeds the network capacity of MNO1, a recourse action is taken by Stage-3. In Stage-3, MNO1

allows UEs with unmet demand to offload their traffic to nearby APs (if connected) with assigning

them the best channels for service, i.e., (D6) and (D7). If there is no unmet demand at the end of

Stage-2, no further resource scheduling is needed during Stage-3.

3.3.4 Uncertainties and Scenario Representation

The two uncertainties of our interest in this study are UEs’ locations and their service demand.

The locations are represented by a more abstract term, which is accessibility between UEs and

RRHs/APs. The corresponding accessibility information are denoted by V (for UEs-RRHs) and

W (for UEs-APs). Both V and W are uncertain parameters whose distributions are assumed to

be known from historical data. Both V and W are represented by matrices of 0’s and 1’s, and

determined by UE’s location and the channel quality. Please note that a UE can always access to

MBS by assumption. Users’ service demand is denoted by r whose distribution follows a uniform

random with known mean values. Let ξ = (V,W, r) be a snapshot of the network describing the



www.manaraa.com

55

users’ accessability information and service demand. The ξ also is a uncertain parameter; to be

specific, it is a set of uncertain parameters.

SP handles such uncertain parameters by means of scenarios. In a particular scenario s, the

network snapshot is known to be ξs = (Vs,Ws, rs). In scenario s, the accessibility between UEs

and RRHs, the accessibility between UEs and APs, and the UEs’ service demand, respectively, are

known to be Vs, Ws, rs, and they are drawn from their corresponding distributions. A scenario

is a realized snapshot of the network, and it can occur at any certain time instance. The set of

such scenarios constitutes a scenario tree. A complete scenario tree, T , is a Cartesian product

of all possible realizations of all uncertain parameters, describing all possible snapshots that can

occur at any time instance. Since the continuous random variable r has an infinite number of

realizations, making an infinite number of scenarios, we use a discretization method proposed by

[79] to reduce the problem size, and thus, to be able to find the optimal solution in a finite time;

it will be discussed shortly in both Section. 3.4.3 and Section. 3.5.2.

3.4 Problem Formulation

Among the decisions that are jointly considered in this chapter, the coupling of channel parti-

tioning and channel allocation is what makes the whole problem to be non-convex and intractable.

As a reminder, channel partitioning is the partition of available channels into two sets, one for MBS

and the other for RRHs, while channel allocation is to assign users channels to provide service. In

order to make the problem tractable, we propose an iterative optimization algorithm such that

channel partitioning is separately handled from the rest decisions.

3.4.1 Decomposition and Iterative Search

The proposed iterative resource allocation algorithm is given in Algorithm 2. Both ρ∗ and

ρt indicate the optimal objective value and the objective value on t-th iteration, respectively.

The composite variable Ω is a set of the decision variables we consider in the proposed problem

formulation, which will be introduced shortly. Both Ω∗ and Ωt, respectively, denote the optimal
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Algorithm 2 Iterative resource allocation algorithm

1: ρ∗ ← −∞ // optimal objective value

2: Ω∗ ← Null // optimal solution set

3: π∗ ← Null // optimal channel partition

4: π ← 0|M1| // initialization

5: for t← 1 to |M1| − 1 do

6: π[t]← 1 // set t-th element to 1

7: Get (ρt,Ωt) by solving DEP (P. 3.4)

8: if ρt > ρ∗ then

9: ρ∗ ← ρt, Ω∗ ← Ωt, π∗ ← π

10: end if

11: end for

12: Return (Ω∗,π∗)

decision and the decision found on t-th iteration. Lines 1–3 initialize the optimal objective value,

optimal solution set and optimal channel partitioning decision in sequence. Line 4 initializes the

channel partitioning vector π to a zero vector. On each iteration of the for loop (lines 5–11), the

number of channels allocated to MBS is increased from 1 to |M1| − 1 by 1 (line 6), where M1 is

the index set of channels accessible to MNO1.

The π ∈ {0, 1}|M1| is an MNO1’s channel allocation vector for MBS, where having 1 or 0

at t-th element indicates that the corresponding channel t is accessible to MNO1’s MBS or not,

respectively. We assume consecutive channel allocation, i.e., the set of channels accessible to MBS

is from 1 to m1 whereas that to SBS is from m1 + 1 to |M1|. Also, there should be at least one

channel available to MBS and RRHs each. The accessible channels for MBS and RRH do not

overlap, and thus there is no cross-tier interference. RRHs operate on the channels that are marked

by zeros in π. We denote such RRH-accessible channels by π = 1|M1|−π, where 1|M1| is a vector

of all 1’s with |M1| entries therein. In π, RRH-accessible channels are marked by 1’s. As a result,

given the power budget PMmax for an MBS and = PRmax for an RRH, the per-channel power use of

MBS and RRH becomes PMmax/|π| and PRmax/|π|, respectively.

In line 7, Algorithm 1 solves DEP (deterministic equivalent problem), which will be introduced

in Section. 3.4.3. In a nutshell, we first form an energy-aware profit maximization problem in



www.manaraa.com

57

SP, and then, transform it into a DEP instance so that we can solve it by the proposed iterative

algorithm with a computer solver, e.g., Matlab [49]. Lines 8–9 compare the best objective value

so far to the current one, and record the current result if it has a higher objective value. Once

the algorithm terminates, it returns both Ω∗ and π∗ (line 12), with which MNO1 can configure its

network.

Please note that Algo. 2 may not produce a global optimal solution if the optimal solution can

only be found with a non-consecutive channel partitioning. However, the assumption on consecutive

channel allocation helps to reduce the complexity of the entire algorithm significantly. In addition,

if the globally optimal solution exists for consecutive channel partitioning, the proposed algorithm

can produce the same optimal solution as global optimum.

3.4.2 Multi-Stage Stochastic Programming

Stage-1 is for network planning, where the long-term decisions are made without knowing the

actual location and demand of UEs. MNO1 assigns a fraction of BBU pool to each RRH after

forming each segment of BBU pool into a VBS (or VM). Also, MNO1 reserves a certain amount

of processing resource at MNO2’s network in preparation for a sudden increase of service demand.

The Stage-1 problem is shown below (called P. 3.1).

max
x,y

. − δ
∑
i1∈I1

xi1 − ε · y +Q(x, y) (3.1a)

subject to
∑
i1∈I1

xi1 ≤ 1, (3.1b)

∀i1 : 0 ≤ xi1 ≤ 1, (3.1c)

0 ≤ y ≤ 1, (3.1d)

∀i1 : xi1 ·K1 ≤ ci1 , (3.1e)

The objective (Eq. 3.1a) is to maximize the total profit, i.e., revenue minus cost. The first term

is the OPEX for operating the BBU pool, where xi1 ∈ x is the fraction of BBU allocated to RRH

i1 ∈ I1, and δ is a conversion parameter from xi1 to expense ($). The second term is the rental
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fee, where y is the fraction of computing resource that MNO1 reserves at MNO2 in advance, and ε

is a conversion parameter from y to the rental fee ($). The third term is the expected profit from

Stage-2, i.e., Q(x, y) = Eξ[Qs(x, y; ξs)], where ξ = (V,W, r) is the uncertain parameter describing

a network snapshot (i.e., accessibility and demand), ξs = (Vs,Ws, rs) is a realized scenario indexed

by s, and Qs(x, y; ξs) is the Stage-2 objective value given the Stage-1 decisions (i.e., x and y)

and a realized scenario of ξs.

For the notation Qs(x, y; ξs), what comes before and after the semicolon, respectively, is the

list of decisions made at the previous stage and the realized scenario (i.e., realizations of uncertain

parameters that become known at the stage). For example, ξs refers to a particular scenario that has

been taken at the beginning of Stage-2. For scenario s, Vs and Ws are the realizations denoting

the accessibility between UEs and RRHs and UEs and APs, respectively, and rs is a realization

of UEs’ service demand in scenario s. The aggregate BBU resource usage should not exceed the

limit of 1 (Eq. 3.1b). Each RRH can be assigned a fraction of BBU (Eq. 3.1c). The portion of

the computation resource to borrow from MNO2 should be non-negative, and it cannot exceed the

limit of 1 (Eq. 3.1d). The network is fronthaul-constrained (Eq. 3.1e), where ci1 is the fronthaul

capacity for the link connected to RRH i1. The constant K1 is a conversion parameter from a

fraction of BBU to the actual amount of bits that can be processed in unit time, i.e., conversion

from [0,1] to bps.

Stage-2 is for service provisioning, whose problem formulation is shown below (called P. 3.2).

Given the decisions made in Stage-1 as well as the scenario that has become known, MNO1

schedules its own networking resources and provides service to its subscribers. Please note that

out of three realizations, i.e., Vs, Ws and rs, that become known in Stage-2, MNO1 makes use

of only both Vs and Ws. As a reminder, MNO1 utilizes its own networking resource in Stage-2.

The Ws will be used in Stage-3 if MNO1 has to offload some of the users’ demand to MNO2.

Qs(x, y; ξs) :=

max
As

. α(
∑
u∈U

∑
m1∈M1

au0,m1,s · f
u
0,m1

)
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− θ · τM
∑
u∈U

∑
m1∈M1

au0,m1,s

+ α(
∑
i1∈I1

∑
u∈U

∑
m1∈M1

aui1,m1,s · f
u
i1,m1

)

− θ · τR
∑
i1∈I1

∑
u∈U

∑
m1∈M1

aui1,m1,s

+Hs(y,As; ξs) (3.2a)

subject to

∀u :
∑

m1∈M1

au0,m1,s +
∑
i1∈I1

∑
m1∈M1

aui1,m1,s ≤ 1, (3.2b)

∀u,m1 : 0 ≤ au0,m1,s ≤ πm1 , (3.2c)

∀u,m1, i1 : 0 ≤ aui1,m1,s ≤ v
u
i1,s · πm1 , (3.2d)

∀i1 :
∑
u∈U

∑
m1∈M1

aui1,m1,s ≤ oi1 , (3.2e)

∀i1 :
∑
u∈U

∑
m1∈M1

aui1,m1,s · f
u
i1,m1

≤ xi1K1, (3.2f)

∀m1 :
∑
u∈U

au0,m1,s ≤ πm1 , (3.2g)

∀i1,m1 :
∑
u∈U

aui1,m1,s ≤ πm1 , (3.2h)

∀u :
∑

m1∈M1

au0,m1,s · f
u
0,m1

+

NRRH∑
i1

∑
m1∈M1

aui1,m1,s · f
u
i1,m1

≤ rus . (3.2i)

In P. 3.2, the objective (Eq. 3.2a) is to maximize profit. The profit increases in the number of

bits carried in downlink for subscribers, but decreases in the power consumption. The constant α

is the conversion parameter from the number of serviced bits to what users has to pay (i.e., profit

to be given to MNO1), aui1,m1,s
∈ [0, 1] is the fraction of time [36] [80] [81] that UE u makes an

association with an MBS (if i1 = 0) or RRH (if i1 6= 0) and receives service on channel m1, fui1,m1
is

the traffic rate (or bandwidth) at which UE u is receiving data from an MBS (if i1 = 0) or RRH (if

i1 6= 0) on channel m1, θ is the conversion parameter from the amount of power consumed to the
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charge for the usage, τM (or τR) is the per-channel power use of MBS (or RRH), and Hs(y,As; ξs)

is the profit from the Stage-3 program. Stage-3 is for an recourse action and is deterministic once

a scenario (or network snapshot) becomes known at the beginning of Stage-2. Thus, Hs(·) is not

an expected profit. Also, the Stage-3 is launched only when there is unmet demand in Stage-2.

Each UE is charged for its data usage by the first and the third term on the objective function

depending on which type of BS it is associated with. The term fui1,m1
is the traffic rate, bandwidth

or channel capacity, defined as:

fui1,m1
=


∆ log2(1 +

Ψu
i1,m1

·τM

∆σ2 ), if i1 = 0 (i.e., MBS).

∆ log2(1 +
Ψu

i1,m1
·τR

∆σ2 ), otherwise (i.e., RRH).

where ∆ is the channel bandwidth, Ψu
i1,m1

is the channel gain between UE u and MBS/RRH i1

over the channel m1 and σ2 is the per-Hz noise power. Also, the second and fourth term in the

objective function charges MNO1 for power consumption.

For each UE, the aggregate amount of time to use MNO1’s BSs cannot exceed a unit time

(Eq. 3.2b). The constraints Eq. 3.2c and Eq. 3.2d indicate that each UE can access MBS and RRH,

respectively, only through the channels accessible to the corresponding BS. Note that vui1,s ∈ Vs is

a binary indicator, telling whether UE u is within the coverage of RRH i1 or not, denoted by 1 or

0, respectively. However, we do not need it in Eq. 3.2c which is for MBS, since an MBS is assumed

to be always accessible to provide coverage. The channel allocation vector for MBS and RRH are

π and π, respectively. The number of UEs that an RRH can handle at the same time is limited

by oi1 (Eq. 3.2e), while that of an MBS is assumed to be large. The fronthaul link between each

RRH and the BBU pool has a limited capacity, meaning that the aggregate amount of downlink

traffic carried over the link is limited (Eq. 3.2f). The constraints in Eq. 3.2g and Eq. 3.2h are to

guarantee that an MBS and RRH, respectively, cannot use a channel for more than a unit time,

if accessible. Lastly, the total number of bits that a UE receives from MBS and RRHs does not

exceed its demand (Eq. 3.2i).

Stage-3 is for a recourse action. For those UEs whose service demand is not fully satisfied,

they are allowed to use MNO2’s resource through APs by offloading their traffic to MNO2. This
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is the case when the entire or a part of the MNO1’s network is saturated, and thus MNO1 cannot

meet the demand of all UEs. The problem formulation is given below (called P. 3.3).

Hs(y,As;ξs) :=

max
Bs,r̃s

. α(
∑
i2∈I2

∑
u∈U

∑
m2∈M2

bui2,m2,s · g
u
i2,m2

)

− β(
∑
i2∈I2

∑
u∈U

∑
m2∈M2

bui2,m2,s · g
u
i2,m2

)

− γ
∑
u∈U

r̃us (3.3a)

subject to

∀u :
∑
i2∈I2

∑
m2∈M2

bui2,m2,s ≤ 1, (3.3b)

∀u, i2,m2 : 0 ≤ bui2,m2,s ≤ w
u
i2,s, (3.3c)

∀i2 :
∑
u∈U

∑
m2∈M2

bui2,m2,s ≤ di2 , (3.3d)

∀i2 :
∑
u∈U

∑
m2∈M2

bui2,m2,s · g
u
i2,m2

≤ zi2 , (3.3e)

∀u, i2 :
∑

m2∈M2

bui2,m2,s ≤ 1, (3.3f)

∀u :
∑

m1∈M2

au0,m1,s · f
u
0,m1

+
∑
i1∈I1

∑
m1∈M1

aui1,m1,s · f
u
i1,m1

+
∑
i2∈I2

∑
m2∈M2

bui2,m2,s · g
u
i2,m2

+ r̃us = rus (3.3g)

∀u : r̃us ≥ 0, (3.3h)∑
i2∈M2

∑
u∈U

∑
m2∈M2

bui2,m2,s · g
u
i2,m2

≤ y ·K2. (3.3i)
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Stage-3 has a similar problem structure to Stage-2. However, in this stage, MNO1 lets its

subscribers use MNO2’s networking resource in order to prevent service outage as much as possible;

otherwise, MNO1 has to pay the penalty for unmet demand. To do so, MNO1 has to pay the

necessary costs in both Stage-1 and Stage-3. The cost that MNO1 is charged at Stage-1 is for

reserving MNO2’s resource (i.e., reservation fee), while the cost at Stage-3 is for the actual usage

of it (i.e., offloading cost).

The objective (Eq. 3.3a) is to maximize the profit, which is a function of the amount of both the

serviced bits via MNO2 and the unmet demand. The parameter β is an offloading cost to MNO2

(i.e., cost for using MNO2’s networking resource) and γ is a penalty for unmet demand. Given the

two parameters, the three terms in Eq. 3.3a correspond to the profit from serviced bits, the cost

for traffic offloading and the penalty for the unmet demand in sequence. The total amount of time

to use MNO2’s resource cannot exceed the limit of 1 (Eq. 3.3b), where bui2,m2,s
∈ Bs is a fraction,

[0,1] of time UE u associates with AP i2 and receives service on channel m2 in scenario s. A UE

can access an AP only when it is within the coverage of the AP (Eq. 3.3c), i.e., when wui2,s = 1.

Each AP has a maximum number of UEs to which it can provide service simultaneously (Eq. 3.3d)

with a limited aggregate bandwidth capacity (Eq. 3.3e). Each channel cannot be occupied/used

for more than a unit time (Eq. 3.3f).

For each UE, the total received service and unmet demand should equal its service demand

(Eq. 3.3g). In the Stage-3 formulation, the service demand requirement is expressed by an equality

constraint by using a slack variable r̃us as in Eq. 3.3g. The amount of unmet demand for each UE is

denoted by r̃us which is non-negative (Eq. 3.3h). The Eq. 3.3i indicates that the aggregate amount of

traffic offloaded to MNO2 should not exceed the limit determined by the decision made in Stage-1.

The conversion parameter K2 is multiplied to y which is the fraction of the computing resource

reserved at MNO2, resulting in the actual amount of offloaded bits that can be processed by MNO2

in unit time.

The Fig. 3.8 summarizes the profit and cost model proposed in this study, which is one of the

major contributions. Depending on the decisions to make in each stage, MNO1 pays fee/cost and/or
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Figure 3.8: The proposed profit and cost model.

makes a profit. In Stage-1, the MNO1 configures its networking resources without providing any

service to users, and thus, there is no profit to make. In Stage-2 and Stage-3, on the other hand,

users receive data service from MBS/RRH or AP, respectively, and from which MNO1 makes profit;

i.e., users are charged for the amount of data received. The MNO1 pays for the power consumed to

provide data service to users in Stage-2. Besides, upon the use of the MNO2’s networking resource

to offload the users’ traffic, MNO1 pays for it to compensate for the MNO2’s operational cost in

Stage-3. Lastly, if there is any unmet demand, MNO1 pays a penalty in proportion to the total

amount in Stage-3.

3.4.3 Deterministic Equivalent Problem (DEP)

The last step is to transform the SP model into a computable deterministic equivalent, DEP, to

be able to solve it with a computer solver. To begin with, given the distribution of the uncertain

parameters, we can find the probability ps of each scenario s in the scenario tree T . By taking

the expectation of the objective values of the stages that are dependent upon the realization of

uncertainty parameters therein, we get the deterministic formulation of the SP as below (called

P. 3.4).
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max
x,y,
A,
B,r̃

. − δ
∑
i1∈I1

xi1 − ε · y

+
∑
s∈S

ps[Qs(x, y; ξs) +Hs(y,As; ξs)] (3.4a)

s.t. constraints in (3.1b)-(3.1e), (3.2b)-(3.2i), (3.3b)-(3.3i),

where s.t. is short for subject to.

The objective (Eq. 3.4a) is the sum of the Stage-1 objective value and the expectation of

the remaining stages’ objectives. Constraints from all stages are then followed to make the DEP

equivalent to the SP formulation. The Algo. 2 in Section. 3.4.1 solves DEP (P. 3.4) on each

iteration as shown in line 7. As aforementioned in 3.3.3, we can apply a discretization method

to the continuous uncertainty parameter, i.e., the service demand r which follows the continuous

uniform distribution, to let it have a finite support; please refer to Appendix A for details. As a

result, the set of scenarios in T also has a finite support, meaning that we can find the probability

ps of each scenario ξs in the complete scenario tree T . Here, ps is the probability that ξ takes on

ξs and S is the index set of scenarios, where |S| = |T |.

3.5 Evaluation

3.5.1 Network Configuration

MBS has a coverage radius of 300 meters, within which four RRHs are located. Each RRH has

a radius of 100 meters. RRHs have a keep-away distance of 100 meters from the MBS tower, and

RRHs are equally spaced. APs are located in a similar manner as RRHs, but the location of an AP

is not within any of the RRHs on the network. The coverage radius of an AP is 150 meters. For

ε and δ, we assume that both MNO1 and MNO2 are using cloud computing service for processing

user data, such as Amazon EC2 [82]. In particular, we have chosen the reserved instance pricing

model of the general purpose instance, m4. The penalty for unmet demand is triple the charge for
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data use. Service demand of each user follows uniform distribution whose mean value is randomly

drawn from [0, 20] Mbps, and the actual service demand of each UE changes over time.

We have used the channel model and parameters in [42]. The distance-dependant path loss from

MBS to UE and RRH to UE is PL (dB) = 128.1 + 37.6 · log10(R) and PL (dB) = 140.7 + 36.7 ·

log10(R), respectively, where R is the distance in km. Log-normal random variable with standard

deviation of 10 dB is used to model shadowing, and a normalized Rayleigh for small-scale fading

effect. The channel bandwidth is 1.25 MHz, and the total transmission power for MBS and RRH is

20 W (43 dBm) and 100 mW (20 dBm), respectively. The noise power density is -174 dBm/Hz [73].

UEs with mobility are initially randomly located, and from the location of UEs, the accessibility

between UE and RRH as well as UE and AP are determined periodically.

3.5.2 Solution Procedure

Given that the possible realizations the users’ service demand r are infinite, the DEP problem

(P. 3.4) is intractable due to the explosive data size. Thus, we apply the discretization method to

r as aforementioned in Section. 3.3.4. In particular, we approximate each UE’s demand into three

discrete values to indicate low, mean and high demand while minimizing the errors between the

the original distribution (i.e., continuous uniform random) and the 3-point approximation for each

user; please refer to Appendix for detail. Due to the the vast size of the data set, however, it is still

not efficient or even possible to solve the problem with complete scenario tree5. Thus, we apply

the sample average approximation (SAA) method [76] to reduce the problem size (i.e., the number

of scenarios to be solved). That is, instead of solving the DEP (P. 3.4) for the complete scenario

tree T , we construct a reduced scenario tree T ′ by randomly sampling a subset of scenarios from

T . Let S ′ be the scenario index set corresponding to T ′. We first replace the expected Stage-2

profit in P. 3.1 by a Monte Carlo estimate Q(x, y)′ =
∑

s∈S′ Qs(x, y; ξs)/|S ′|, where each scenario

in T ′ is equally likely and ξs ∈ T ′. Next, we replace the objective function of DEP (P. 3.4) by what

5Note that that the cardinality of the complete scenario tree is (NL ·NQ)NUE , where NL and ND are the numbers
of realizations of the uncertainties related to the UEs’ location and their service demand, respectively, and NUE is
the number of UEs.
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follows:

max
x,y,
A,
B,r̃

. − δ
∑
i1∈I1

xi1 − ε · y

+
1

|S ′|
∑
s∈S′

[Qs(x, y; ξs) +Hs(y,As; ξs)]

Due to the use of reduced, randomly sampled scenarios in the SAA method, optimal solutions

vary with respect to which scenarios have been chosen to construct a reduced scenario tree T ′. In

this regard, we will show both stability and quality of solution at the end of this section. We have

implemented and evaluated the proposed method as well as the ones for comparison on Matlab

and CVX [50]. We have constructed a scenario tree with 30 scenarios chosen at uniform random

for Sections 3.5.3, 3.5.4 and 3.5.5. In Section 3.5.6, we construct three more scenario trees in the

same manner in order to study the solution stability and quality. For each scenario tree we have

simulated the network for 1,000 seconds.

3.5.3 Effect of Uncertainties

First, we have studied the effect of different ways of handling uncertainties on performance. We

have compared the proposed method to three different methods that completely or partially ignore

the uncertainties. To be specific, the four algorithms to be compared with each other are as follows.

� CMCD (constant mobility, constant demand) which assumes constant UEs’ mobility and

constant service demand6,

� CM (constant mobility) which assumes constant UEs’ mobility, but considers uncertain de-

mand,

� CD (constant demand) which assumes constant demand, but considers uncertain UEs’ mo-

bility, and

� proposed which considers the uncertainties in both mobility and demand.

6In the context of SP, this type of problem is called expected value (EV) problem.
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Figure 3.9: Comparison of the optimal profit achieved with respect to different ways of handling

uncertainties over five runs of simulation.

Fig. 3.9 shows the optimal profit achieved by the four methods for five runs of simulation.

Clearly, CMCD yields the least profit. This is because CMCD ignores the uncertainties in both

mobility and service demand by assuming constant values for all uncertain parameters. Thus,

CMCD suffers from the under-provisioning problem; i.e., the reserved resource is not enough to

handle the actual demand. An insufficient amount of network resource reserved by CMCD soon

results in the network saturation, causing users to experience service outage to a large degree. On

the other hand, the proposed method, CM and CD consider uncertainties present on the network.

Such an awareness makes those methods reserve more resource than CMCD, and thus, the three
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methods are likely to suffer less from the under-provisioning problem. Among the three that

partially or completely consider the uncertainties, the proposed method achieves the highest profit,

implying the importance of the comprehensive consideration of the unpredictability. In other words,

since CM and CD are unaware of the uncertainty in mobility and service demand, respectively, they

have a narrower view of what can happen on the network than the proposed method has.

One interesting finding from comparing CM to CD in Fig. 3.9 is that over all simulations, the

performance of CD is no less than that of CM. From this observation, we can conclude that the

uncertainties in mobility has a larger effect on the profit than the varying service demand. When

there are short-range BSs are deployed and used, the connectivity between such BSs and UEs are

important because the short-range BSs can provide high throughput to users with much low power

compared to MBSs by taking advantage of the short distance to users. However, the availability of

such BSs to users varies significantly over time due to the short service range.

The Fig. 3.10 depicts the average amount of unmet demand per user over five runs of simulation.

It also implies whether each method suffers from the resource under-provisioning problem or not.

CMCD does not consider any of the network uncertainties, and thus, it optimizes the networking

resource only based on the constant parameters for users’ mobility and service demand. Due to this

shortsighted view over the network, CMCD reserves the least amount of the networking resource

and fulfills the constant service demand from the users located at fixed locations. As a result,

CMCD suffers most from the service outage. On the other hand, the rest three schedule more

resource in order for them to be ready for many different scenarios that are likely to occur.

Although the three methods consider the uncertainties, all of them have non-zero unmet de-

mand. This shows a tradeoff between the penalty for unmet demand and the cost to pay for re-

serving and utilizing the networking resource. Reserving too much resource on BBU pool and also

from MNO2 may result in a zero unmet demand at all times. However, such an over-provisioning

approach can leave a significant portion of the resource unused in most of the time, making the

solution less cost-effective. In this regard, what Fig. 3.10 shows is that instead of having all de-

mand perfectly satisfied, allowing a negligible amount of QoS degradation gives a higher profit gain
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Figure 3.10: Comparison of the average unmet demand per user with respect to different ways of

handling uncertainties over five runs of simulation.

overall. Again, the proposed method results in the least amount of unmet demand among the four,

showing that it is beneficial to be aware of uncertainties as much as possible.

Continuing the discussion on the mean unmet demand in the previous figure, Fig. 3.11 shows

why are the methods that ignore uncertainties suffering from such a large unmet demand. The y

axis in Fig. 3.11 indicates how much resource does MNO1 borrow from MNO2. In the case of the

proposed method, having more knowledge on uncertainties let MNO1 borrow more resource from

MNO2. However, that is not the case to CMCD. Since CMCD is informed only of one snapshot of
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Figure 3.11: Comparison of the fraction (y) of the resource that MNO1 borrows from MNO2 at

Stage-1 with respect to different ways of handling uncertainties over five runs of simulation.

the networks as to users’ location and service demand, CMCD does not borrow any resource from

MNO2, resulting in a large unmet demand in practice as it can be seen in the previous Fig. 3.10.

Next, we have measured the energy consumption and energy efficiency performance. First, the

Fig. 3.12 shows the total amount of power consumption of the four different schemes over five runs

of simulation. Although the proposed scheme spens the least amount of power during operation,

the difference among the four schemes is not significant. However, considering the unmet demand

shown in Fig. 3.10, the energy efficiency differs to a large degree between different schemes as shown

in the following Fig. 3.13.
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Figure 3.12: Total power consumption with respect to different ways of handling uncertainties over

five runs of simulation.

Instead of considering only the power consumption, Fig. 3.13 takes both profit and power

consumption into account and depicts the amount of power consumed to make a unit profit (i.e., a

dollar) as an energy-efficiency metric. Clearly, CMCD consumes much more power compared to the

rest three methods to make a unit profit, resulting in a low energy efficiency. Given that CMCD

has suffered most from the unmet demand, it has made the least profit from providing service to

users, while paying a significant penalty for unmet demand. On the other hand, CM, CD and

the proposed methods have yielded a relatively small amount of unmet demand while consuming

a similar amount of power to CMCD, resulting in a much higher profit and the energy efficiency
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Figure 3.13: Comparison of the power consumed to make a unit profit ($) with respect to different

ways of handling uncertainties over five runs of simulation.

than CMCD. Still, the proposed scheme outperforms the rest since it has recorded the least among

the four methods in both power comsumption and unmet demand.

In what follows, we compare the per-stage profit of the four schemes, and study how the

decisions made by each method affects the revenue. Fig. 3.15 shows the Stage-1 profit of the

four schemes. The profit in this stage cannot be positive since MNO1 does not provide any service

to users. Instead, it pays the expense for both operating its networking resource (i.e., BBU pool)

and borrowing resource from MNO2. The expense for operation is not much different across the four

scheme, and thus, the different in the Stage-1 profit mainly comes from the amount of resource
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borrowed from MNO2. The proposed scheme, CM and CD are fully or partially aware of the

uncertainties in the network and thus borrow a certain amount of resource from MNO2. However,

CMCD is not, and thus, it concludes that the users’ demand can be satisfied solely by using MNO1’s

networking resource. As a result, CMCD spends the least amount of expense in Stage-1.

The effects of the decision made in Stage-1 does not become evident in Stage-2 yet. The

Fig. 3.16 shows the Stage-2 profit, showing that the difference in the profit made in Stage-2 is

trivial among the four schemes. In fact, CMCD achieves the most profit, implying that CMCD

is actively and heavily using the MNO1’s networking resource to fulfill the service demand from

users. It would be an optimal decision if there was no uncertainty on the network, but it is not the

case as shown in the following Fig. 3.17.

Finally, the Fig. 3.17 shows the Stage-3 profit, on which stage the traffic offloading to MNO2

occurs and the penalty to the unmet demand is measured. Since there is no scheme that completely

fulfills the service demand, all the four scheme need to pay the price for the unmet demand which

affects the overall revenue. However, only CMCD has yielded a negative profit in Stage-3 since

it did not reserve any resource at MNO2 while having much unmet demand. Thus, all the service

demand that has not satisfied at the end of Stage-2 will be considered as unmet demand, and for

which MNO1 has to pay the penalty. However, the rest three have resulted in nonnegative profit

in Stage-3. That is, although each of the three schemes has a strongly positive amount of penalty

to be paid for the unmet demand, it is offset by the profit from providing service to users through

the MNO2’s network infrastructure. In addition, the proposed method has successfully made a

strongly positive profit in Stage-3 over all runs of simulation, showing the advantage of being well

aware of the network uncertainties. In sum, being well aware of the network uncertainties can yield

a more profitable and energy-efficient solution compared to others that are completely or partially

not.
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3.5.4 Effect of Different Operation Rules

In this section, we study the effects of different operation rules on the performance. The

proposed method allows a negligible amount of QoS reduction at the expense of penalty, which is

done by introducing a nonnegative slack variable r̃us as in Eq. 3.3g and Eq. 3.3h. Also, by allowing

traffic offloading to other MNOs, the proposed method minimizes the amount of unmet demand.

In order to study the effect of such operation rules, we compare the proposed method to other

models with different operation rules. Please note that the methods to be used for comparison in

this section are aware of the network uncertainties as much as the proposed method is. The models

to be considered in this section are:

� PSD (perfect service demand) which has to perfectly satisfy service demand.

� NoOFL (no offloading) which does not allow any traffic offloading to other MNOs.

� proposed which allows both service outage (with penalty) and traffic offloading.

We evaluated the three different rules with respect to the same evaluation criterion as in Sec-

tion. 3.5.3. We have carried out five runs of simulation, and the averaged results are summarized

in Table 3.3.

As it can bee seen in the table, PSD resulted in an infeasible solution over all runs of simulation,

and thus it could not provide any service to users. Due to the mobility and varying service demand

of users, MNO1 cannot always fully satisfy the users’ demand. This implies that MNOs cannot put

a PSD-like rule into effect since it might cause a service outage to the entire system when there is

no feasible solution.

Also, Table 3.3 shows that the proposed method much outperforms NoOFL. The achieved profit

of the proposed method is almost twice that of NoOFL. The main reason for such a significant

difference in profit is the penalty to pay for unmet demand in Stage-3. In contrast to the proposed

method which made a positive profit in Stage-3, NoOFL resulted in a large expense in the same

stage mainly due to the large amount of unmet demand. Considering that both methods used

similar amount of power during operation, the proposed method significantly outperforms NoOFL
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in terms of the power consumption per watt. Since NoOFL does not allow any offloading to MNO2,

its optimal solution and the resulted performance are similar to that of CMCD. It is noteworthy that

CMCD and NoOFL are totally different in terms of the awareness of the uncertainties. However,

due to the fact that both do not or cannot leverage any resource from MNO2, the performance

of one becomes similar to that of the other. This result proves the significance of allowing traffic

offloading which is as important as considering the uncertainties in the network.

In sum, a strict operation rule that compels an MNO to fully satisfy the users’ service demand

should not be considered in practice since it can cause the entire network to be unavailable for

a long period of time. Also, being capable of traffic offloading significantly increases the system

performance, since a network can make use of more networking resource than it actually owns. In

other words, sharing the network resource among different MNOs is an effective way of enhancing

the network performance.

3.5.5 Time Complexity: Runtime

For evaluation, we have used a laptop with Intel® CoreTM 2 Duo P8700 2.53 GHz CPU and 4

GB memory. As illustrated in Algo. 2, the resource allocation algorithm iterates for |M1|−1 times,

and within each iteration it solves DEP (i.e., P. 3.4) for a reduced scenario tree T ′. In the case

of CMCD (or the expected value problem, referred to as EV), it took only 4.56 seconds (standard

deviation is 0.83) to find an optimal solution. Since EV assumes the mean values for all uncertainty

parameters, the problem size as well as the dimension of the decision variables is small and thus, it

can be solved instantly. On the other hand, the stochastic program (i.e., DEP) took 87.64 seconds

to solve (standard deviation is 2.34), which is much larger than that for EV. The difference in

cputime comes from the difference in problem size and the dimension of the decision variables. To

be specific, DEP takes much more data sets into account and thus, has much larger set of decision

variables. As a result, the stochastic approach results in a better solution at the expense of cputime.

In our implementation, the complexity of other methods that are not mentioned here is identical

to that of the stochastic problem, and thus the cputime results of those are omitted.
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3.5.6 Stability and Quality of Solution

As aforementioned, we have used a sampling method as a part of the solution procedure to

reduce the problem size and thus a computer solver can solve the optimization problem. To be

specific, out of all possible combinations of the uncertainty parameters describing the connectivity

and service demand information, we draw only a subset at uniform random to construct a reduced

scenario tree T ′. Thus, the optimal solutions from different scenario trees can vary depending on

the construction of the corresponding scenario trees. In this regard, it is important to evaluate the

stability and quality of the solution. In this section, we first show that the solutions from different

scenario trees have in-sample and (weaker) out-of-sample stability, meaning that the solution does

not depend much on the construction of scenario trees. Also, by evaluating the solution quality,

we show that the upper bound of the error caused by the sample average approximation method

is small. Interested readers can refer to [77] for an in-depth discussion on the stability and quality

of solution for stochastic programming.

For notational simplicity, let φ(x; Ti) be the optimization problem, where φ is the DEP instance,

x is the set of decision variables, and Ti is a scenario tree indexed by i. By solving the problem, we

get the optimal solution x̂i = arg maxx φ(x; Ti). Also, we have an objective value ρij = φ(x̂i; Tj)

when the DEP instance is evaluated with x̂i for Ti. In this section, we have used four different

scenario trees to evaluate the solution stability and quality.

3.5.6.1 In-Sample Stability

The solution procedure has an in-sample stability if the following is satisfied [77]: φ(x̂i; Ti) ≈

φ(x̂j ; Tj), which happens when the selection of scenario tree does not affect the optimal objective

value much. Thus, if we have an in-sample stability, we can choose any scenario tree when solving

a stochastic program, and the corresponding optimal solution will be comparable to the ones from

other scenario trees. We have used the Jain’s fairness index [84], J (ρ1, ρ2, · · · , ρn) =
(
∑n

i=1 ρi)
2

n×
∑n

i=1 ρ
2
i
, to

check how much are the objective values from different scenario trees close to each other. Out of

four scenario trees we have constructed, we have a fairness index of J ({ρii|∀i = 1, 2, 3, 4}) = 0.9999
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which is close to 1. That is, the optimal objective values from five different scenario trees are close

to each other. It implies that no matter how each scenario tree is configured, the optimal value

(i.e., optimal profit) from such a scenario tree will not much differ from the others from different

scenario trees.

3.5.6.2 Weaker Out-of-Sample Stability

The weaker out-of-sample stability checks if the solution from a scenario tree is still a good

solution to other scenario trees as well. We have a weaker out-of-sample stability, if the following

holds [77]: φ(x̂i; Tj) ≈ φ(x̂j ; Ti). The Tab. 3.5 show the weaker out-of-sample stability test results.

The (i, j)th entry in the table is the results of |ρij−ρji|. The mean of the values above the diagonal

is 30.6819 which is merely 2.64% of the mean of ρij for all i, j where i 6= j. Therefore, the solution

procedure has a weaker out-of-sample stability.

3.5.6.3 Solution Quality

Since the solution procedure has both in- and out-of-sample stability, we then study the solution

quality. By definition [77], the quality of a given solution x̂i corresponds to the optimality gap which

is defined as err(x̂i) = maxx φ(x; ξ)− φ(x̂i; ξ). However, it is impossible to find the gap because of

the vast size of the original problem. Instead, we calculate a statistical estimate of the error of a

particular solution x̂i, which is: err(x̂i) . 1
n

∑n
j=1[maxx φ(x; Tj) − φ(x̂i; Tj)], where n = 4 and ≤

can be used instead of . as n→∞. The Tab. 3.5 shows the stochastic upper bound on the error

for each solution. Compared to the objective values which are greater than or equal to 1114.3297

in any cases, the error is small, implying a high quality of the solutions.

3.6 Conclusion

In this chapter, we have studied optimal resource allocation in H-CRAN under uncertainty.

In order to maximize profit as well as to minimize the power consumption, the proposed method

optimizes the set of resources constituting H-CRANs, such as BBU pool, channels and BSs given
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fronthaul and QoS requirements. Also, by allowing different network operators to share their

resources by means of traffic offloading/roaming, the proposed method has further increased the

profit. By taking a multi-stage SP approach, the uncertainties in both users’ mobility and their

service demand are taken into account and handled for resource optimization. The evaluation results

show that the proposed method can increase the profit, energy-efficiency and QoS compared to the

methods that do not or partially consider the uncertainties. In addition, we have shown that the

traffic offloading among different MNOs can further increase the cost-efficiency of H-CRANs.
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Table 3.1: Summary of notations used in Chapter 3

Sets

I1 Index set of RRHs, {1, 2, · · · , i1, · · · }
I2 Index set of AP, {1, 2, · · · , i2, · · · }
M1 Index set of channels MNO1 can access to, {1, 2, · · · ,m1, · · · }
M2 Index set of channels MNO2 can access to, {1, 2, · · · ,m2, · · · }
S Index set of scenarios, {1, 2, · · · , s, · · · }, |S| = |T |
T Complete scenario tree (i.e., complete set of scenarios)

U Index set of UEs, {1, 2, · · · , u, · · · }
Uncertainty parameters

r Users’ service demand

V Accessibility indicator between UEs and RRHs

W Accessibility indicator between UEs and APs

ξ Description of accessibility and demand, (V,W, r)

Deterministic parameters

α Conversion parameter from serviced bits to revenue

β Offloading cost

ci1 Backhaul constraint on RRH i1
di2 Association capacity of AP i2
δ OPEX of BBU pool (i.e., computing resource)

ε Computing resource reservation cost

fui1,m1
Bandwidth of channel m1 between UE u and RRH i1

gui2,m2
Bandwidth of channel m2 between AP i2 and UE u

γ Penalty for unmet demand

K1 MNO1’s conversion parameter for processing capacity

K2 MNO2’s conversion parameter for processing capacity

oi1 Association capacity of RRH i1
τM Per-channel transmission power of MBS

τR Per-channel transmission power of RRH

θ Energy cost

zi2 Aggregate bandwidth capacity of AP i2
Decision variables

xi1 Fraction of BBU pool allocated to RRH i1, where xi1 ∈ x

y Fraction of computing resource reserved at MNO2’s BBU pool

π or π MNO1’s channel allocation vector for MBSs or RRHs

As UE, BS (MBS or RRH) and channel mapping in scenario s

Bs UE, AP and channel mapping in scenario s

r̃us Unmet demand of UE u in scenario s, where r̃us ∈ r̃s
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Table 3.2: Network parameters

|I1| 4 ε 2δ

|I2| 4 δ $2.608/hour [82]

|M1| 5 K1 300Mbps

|M2| 5 K2 300Mbps

|U| 15 α $20/300MB/mo [83]

|T ′| 30 θ $0.0897 per watt-hour [72]

oi1 3 (∀i1 ∈ I1) γ 3α

di2 3 (∀i2 ∈ I2) β $15/500MB [56]

zi2 30Mbps (∀i1 ∈ I1) ci1 30Mbps (∀i2 ∈ I2)

Table 3.3: Comparison of the mean performance out of five runs of simulation.

Criterion Proposed PSD NoOFL

Achieved profit ($) 1173.7990 n/a 522.5996

Mean unmet demand (Mbps) 0.1000 n/a 1.5735

Total power consumption (Watt) 18.9981 n/a 18.9949

Power use per profit (Watt/$) 0.0162 n/a 0.0372

Fraction of resource reservation (y) 0.7241 n/a 0.0

Stage-1 Profit ($) -1.3259 n/a -0.2775

Stage-2 Profit ($) 1104.0434 n/a 1115.8850

Stage-3 Profit ($) 71.0812 n/a -593.0078

Table 3.4: Results for the weaker out-of-sample stability.

|ρij − ρji| j = 1 j = 2 j = 3 j = 4

i = 1 0 42.7756 50.6854 19.4565

i = 2 42.7756 0 19.5922 20.0975

i = 3 50.6854 19.5922 0 31.4837

i = 4 19.4565 20.0975 31.4837 0

Table 3.5: Stochastic upper bound on the error for each solution.

Solution x̂1 x̂2 x̂3 x̂4

Error 28.9169 8.4497 8.4824 13.2394
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Figure 3.18: Comparison of the per-stage profit with respect to different ways of handling uncer-

tainties over five runs of simulation.
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CHAPTER 4. ENHANCED POWER SAVING MECHANISM FOR NEXT

GENERATION WLANS: LARGE-SCALE 802.11AH INTERNET OF

THINGS NETWORKS

4.1 Summary

We consider the power saving mechanism for 802.11ah on large-scale sensor networks. Power

saving mode allows sensor nodes to switch to low-power state while APs buffer incoming frames for

them. Also, 802.11ah introduced TIM and page segmentation scheme to cope with a large number

of nodes. Although it is a powerful tool for reducing contention and increasing sleep intervals,

the advantage comes at the expense of additional energy waste, which becomes exacerbated as

the number of nodes increases. In this chapter we aim at minimizing such energy waste and

enhancing energy efficiency which is critical to large-scale 802.11ah networks. We propose a method

that selectively and dynamically changes the membership of nodes and rearranges their traffic to

maximize overall sleeping intervals without causing delay to data delivery. To this end, we propose

a temporary membership change scheme and a traffic scheduling algorithm which reduce overall

power consumption. Also, to make the problem tractable and scalable, we apply a relaxation

technique and devise a low-complex scheduling algorithm, respectively, of which performance is

comparable to optimum. Evaluation results show that the proposed scheme can enhance energy

efficiency by decreasing the number of active nodes by up to 37.8% compared to 802.11ah. The

complete version of this chapter has been published in [85].

4.2 Introduction

A long with the continuous development of the communication devices and networking technol-

ogy, the idea which is to connect physical wireless sensor nodes located at the surrounding area and

thus, to provide a diverse range of applications has received much attention. Among various tech-
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Table 4.1: Abbreviations and acronyms used in Chapter 2

AID Association Identifier

AP Access Point

DL/UL Downlink/uplink

(D)TIM (Delivery) Traffic Indication Map

IoT Internet of Things

MAC Medium Access Control

RAW Restricted Access Window

STA Station, i.e., (sensor) node/device

TIM STA a STA that shows its paged status in TIM

niques in connecting a large number of devices to the Internet, IoT1 has recently drawn attention

from academia and industry, although it was first introduced back in 1998 [89]. IoT is expected to

play a remarkable part in many applications, such as environmental monitoring, smart building,

health care, home automation, disaster alerting and ambient assisted living [89] [90] [93], to name a

few. Also, its potential for practical use has been shown in many literatures, including IoT testbeds

[87] and the off-the-shelf market products [88].

One of the major technical challenges in realizing IoT applications is an absence of unified

communication technology for sensor nodes. Therefore, different applications have been using

different networking systems to connect devices (e.g., Zigbee, 802.15.4, 6LoWPAN, Bluetooth,

cellular networks, etc. [91]) for their own good or specific missions [86]. To this end, IEEE

802.11ah Task Group was formed in 2010 aiming at providing a unified solution for connecting

and integrating a large number of (possibly heterogenous) battery-powered devices at the license-

exempt band below 1 GHz, excluding the TV White Space bands.

Although a part of the specification [9] is inherited from the previous IEEE 802.11 standards,

e.g., 11n and 11ac, a long transmission range (∼1km), supporting a large number of STAs (up to

∼8,000), coexistence/integration with 802.15.4 devices, and an enhanced power saving are the ones

that uniquely distinguish 802.11ah from the rest of the IEEE 802.11 family; interested readers can

refer to [8] and [92] for system requirements and use cases, respectively. In other words, unlike the

1Abbreviations and acronyms that frequently appear in this chapter are summarized in Table 4.1.
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previous 802.11 standards that are designed to provide high data rates for small-/medium-sized

networks, 802.11ah is intended to handle a large number of battery-limited STAs per AP with a

low data rate [93] and a large coverage for an extended lifetime, which is why energy efficiency has

to be one of the primary concerns.

As expected, 802.11ah inherited the power saving mechanism from its predecessors to prolong

the lifetime of STAs. In addition, TIM and page segmentation, combined with a restricted access

mechanism, is introduced to efficiently cope with a large number of STAs; to be specific, STAs are

clustered into multiple groups, and each of which is assigned a dedicated time interval for channel

access. By efficiently limiting the level of contention, STAs can spend less time on channel access

and more in low-power state. For a STA to retrieve buffered data from AP, it periodically wakes up

to receive DTIM, which is a group-wise paging status, and if paged, it wakes up on their assigned

time interval to listen to TIM, which is a STA-wise paging status. In spite of its advantage, however,

the paging-based power saving mechanism causes an unnecessary energy waste problem. A STA

that does not have any buffered data has to wake up if the group to which the STA belongs is

paged, and the energy waste from such unnecessary wake-ups becomes exacerbated as the number

of STAs increases.

Previous studies concerning power consumption [104] [106] [109] have focused on the energy

efficiency mainly in regard to the channel access. This approach can be beneficial if STAs are

backlogged and actively trying to access the channel for most of the time, but that is not likely

to be the case, in general, for 802.11ah sensor networks [91] [92] [93]. Rather, maximizing both

the number of sleeping STAs and their sleep intervals needs to be a top priority to enhance energy

efficiency for a large-scale sensor network with low traffic rate. It has not been noticed that, as

the number of STAs increases, 802.11ah power saving and paging scheme might cause a frequent,

unnecessary energy waste for the aforementioned reason, which is the motivation of this chapter. In

this regard, our goal is to identify and address the unnecessary energy waste problem of 802.11ah

power saving mechanism. To this end, we propose a novel solution that maximizes the overall

energy efficiency while being compliant with 802.11ah.
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In this chapter, we propose a dynamic membership change mechanism for a large-scale 802.11ah

wireless sensor network to prolong the lifetime of STAs by increasing their sleeping periods. Specif-

ically, the proposed mechanism reduces the number of STAs that have to unnecessarily wake up

under the 802.11ah power saving mechanism. To this end, we formulate an optimization problem

that establishes an additional membership relation. Its solution provides an optimal strategy that

allows some selected STAs to temporarily change their membership such that the following schedul-

ing algorithm can maximize the number of sleeping STAs. Also, we apply a relaxation technique

to the optimization problem to make it tractable, while keeping the optimality gap small. What

follows is to propose a low-complexity traffic scheduling algorithm that maximizes the sleeping

intervals for STAs. Its performance in terms of the number of STAs in low-power mode is com-

parable to the optimal scheduling scheme, while incurring much less overhead. The proposed idea

does not depend on or assume any particular grouping of STAs. Also, it makes use of the same

TIM/AID structure as defined in 802.11ah [9] and does not require any significant changes. Thus,

the proposed method is compatible with 802.11ah with little modification. Finally, the proposed

traffic scheduling algorithm is lightweight, making it suitable for online processing.

The rest of the chapter is organized as follows. A brief introduction to IEEE 802.11ah MAC

and the motivation of the research is given in Section 4.3. The following Section 4.4 introduces the

network system model and assumptions. Section 4.5 and 4.6 presents the proposed Secondary AID

Assignment and the Traffic Scheduling algorithm, respectively. The evaluation and comparison

results are presented in Section 4.7, and finally, we conclude the chapter by Section 4.8.

4.3 Preliminaries

In this section, we first provide a brief introduction to 802.11ah MAC. In what follows, we

present an illustrative example scenario that motivated this research.
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Page 1 Page 2 Page 3 Page 4

Block 1 Block 2 Block 3 Block 4 ... Block 32

2048 STAs per page

32 Blocks:

8 Sub-blocks:

64 STAs per block

8 STAs per sub-block

4 Pages:

Figure 4.1: Illustration of the 802.11ah TIM structure.

4.3.1 802.11ah MAC: TIM and Page Segmentation

In this study, we focus on the 802.11ah TIM STAs whose paged status is included in TIM;

interested readers can refer to [9] [91] for the detailed description of the 802.11ah MAC features.

The term paged in this chapter refers to the case that there is at least one data buffered at AP. A

STA is paged (by TIM) if an AP has pending traffic for the STA, and in this case, the TIM group

to which the STA belongs has to be paged (by DTIM) as well.

TIM and page segmentation have been introduced in 802.11ah to effectively manage a large

number of STAs, reduce the level of contention, and enhance the energy efficiency in a structured

manner. By limiting the number of STAs that are allowed to participate in contention at the same

time, STAs spend less time in channel access and more in low-power state. TIM is structured in

a 3-level hierarchy as shown in Fig. 4.1. Throughout the chapter, we assume the same parameters

for the number of pages and blocks as in [9]. As shown in Fig. 4.2, the structure of AID is
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Index in a Sub-
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Figure 4.2: Illustration of the 802.11ah AID structure.

closely related to that of TIM by having a 3-level hierarchical structure, i.e., page/block/sub-block.

A set of STAs whose AIDs are within a certain range belong to the same TIM block (referred to

as group in this chapter), and they are assigned to the same time period during which they are

exclusively allowed to access the channel. In addition to the structured TIM/AID as well as the

grouping of STAs, both power saving mechanism and page segmentation enable an efficient power

and transmission management.

The power saving mode allows STAs to turn off their communication interfaces for a certain

period of time to reduce energy consumption and, in the meantime, an AP buffers incoming traffic

for them. TIM stations periodically wake up to receive DTIM/TIM, which lets TIM STAs sleep

as much as possible and wake up only when they are allowed to contend for the channel. STAs

in the same TIM group wake up during their designated time period, and thus their contention

is not interfered by the rest TIM groups. Therefore, the level of contention for accessing the

channel becomes limited, while the sleeping interval increases. Time is slotted into multiple DTIM

intervals, each of which is further divided into multiple TIM intervals. At the beginning of each

DTIM interval, all TIM STAs must wake up and listen to DTIM which is a group-wise page status

map. However, it does not specify which STA(s) is paged. Therefore, every STA in the paged TIM

group needs to wake up on its TIM interval (i.e., the time interval for the group to which the device

belongs) to see if it actually has any buffered traffic at the AP; on the other hand, STAs in the

non-paged TIM groups remain asleep.
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4.3.2 Motivation

Although the TIM-based page segmentation scheme has many advantages, it might incur an

undesired energy waste for what is called unnecessary wake-up in this chapter. As aforementioned,

STAs in low-power state must wake up to receive DTIM and TIM, if their group is paged. For

those STAs that expect frequent traffic arrivals, waking up on their TIM interval is likely to be

necessary ; in other words, it is likely that the AP has buffered data for them. On the other hand,

a STA which rarely or occasionally receives traffic will see its wake-up as unnecessary in most

cases; in other words, it wakes up only because one or more other STAs in the same TIM group

is paged, and thus its wake-up will be a waste of energy (i.e., there is no buffered traffic for it).

To make matters worse, the unnecessary wake-up problem becomes exacerbated as the number of

STAs increases because the probability of a group being paged increases with the aggregate traffic

rate of the group. As a result, the energy efficiency of each individual STA as well as that of the

entire network is degraded.

Although a few number of such unnecessary wake-up events might consume a negligible amount

of power, considering that the expected lifetime of an 802.11ah STA is long (i.e., from months to

years [91]) and the number of STAs on the network is large (up to∼8,000), a STA which is frequently

exposed to such a case will suffer from a severe energy waste in the long run. For example, let the

duration of a single TIM group be 200ms [91] and the number of TIM groups in total is 32, which

results in 6.4s of one DTIM interval. Assuming a year of expected lifetime, each STA will encounter

approximately 5× 106 times of DTIM intervals. On each interval, a STA that unnecessarily wakes

up will waste σ amount of more energy compared to staying in low-power state. The additional

energy waste σ amounts to: 2 · PST + PACTIV E(t) + PRCV (t)− PSLEEP (t), where PST , PACTIV E ,

PRCV and PSLEEP are the power consumption for making state transition, staying in active state,

signal reception and decoding, and staying in sleep state, respectively, and t is the amount of time

spent. For each individual STA, the increase in the probability, p, of making unnecessary wake-ups

results in wasting approximately 5 × 106pσ amount of energy, which is mainly caused by having

more STAs in the same group. Obviously, the total amount of energy waste from the entire network
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significantly increases for the same reason. In order to reduce such unnecessary wake-ups and thus,

to increase the energy efficiency, we propose a scheme that enables both a temporary membership

change and traffic scheduling. The following example shows how the proposed idea can efficiently

achieve the goal without requiring much of the changes to the 802.11ah operation.

Let us assume a simple TIM and AID structure where there is only one page and two TIM

groups, and each TIM group can associate with up to 4 STAs. On the network, seven STAs, from

n1 to n7, are associated and grouped as: TIM1 = {n1, n2, n3} and TIM2 = {n4, n5, n6, n7}. Here,

TIM2 group is fully occupied, while TIM1 has one unused (AID) slot. Right before the beginning

of the i-th DTIM interval, the AP has two buffered data, one for n1 ∈ TIM1 and the other for

n7 ∈ TIM2. Since both TIM groups have at least one pending data for each at the AP, the paged

status or block bits (i.e., indication of the presence of the buffered traffic for each TIM group) for

both TIM groups need to be set in DTIM. At the beginning of the TIM period for each group,

all STAs in the corresponding group must wake up and receive TIM since their group is paged in

DTIM. In this simple example, five stations experience unnecessary wake-up events.

On the other hand, let us consider the case where the AP additionally assigns the empty slot in

TIM1 to n7 so that n7 can be regarded as a member of TIM1 as well. For the same buffered traffic,

the AP would set the block bit for TIM1 only, since all the pending data at the AP can be delivered

by just waking up TIM1. In this setting, the number of unnecessary wake-ups is only 2, n2 and n3,

and the remaining STAs (i.e., all STAs in TIM2 except n7) can stay in low-power state. It is worth

mentioning that as it can be seen in Section. 4.7, the gain of the proposed method increases with

the network size; in other words, the unnecessary wake-up problem deteriorates as the number of

STAs on the network increases. This temporary membership change approach does not require a

STA to re-associate or any change in the management/organization of the entire STAs. In addition,

as discussed in Section. 4.6, it does not increase the expected delay to data delivery.
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4.4 Network Model and Assumptions

We consider a single-hop 802.11ah sensor network where all STAs communicate directly with an

AP on a shared wireless channel. We assume that traffic arrivals to STAs (e.g., actuation or control

messages in DL) follow the Poisson distribution. The rate of each arrival is assumed to be known

or can be learned by either an explicit notification or monitoring the traffic, respectively. Given

the traffic rates, we classify the STAs into two groups; one is called sensory whose traffic arrival

rates are small, and the other is called controllable whose incoming traffic rates are relatively large.

Sensory STAs are the ones whose main task is sensing the environment or metering the usage of

resources, and then they send the information in the UL. Therefore, their incoming traffic rates are

low. On the other hand, the controllable STAs are the ones that frequently receive either control or

actuation messages in the DL so that they can perform some designated actions/tasks or missions.

We assume that the majority of STAs are sensory. However, we do not assume anything about the

number of devices on the network and how the association/grouping has been made.

In the 802.11ah network, any STAs that want to join the network should make an association

with an AP. As a result, STAs are given AIDs which also indicate to which TIM group each STA

belongs. Let us denote this association as primary association, and the corresponding AID as

primary AID (or P-AID). After the primary association is made, the proposed method runs the

following two programs: Secondary AID Assignment and Traffic Scheduling. The Secondary AID

Assignment program utilizes the unused AIDs, and makes additional associations between some

STAs and groups so that those STAs can also associate with other groups in addition to the group

they initially belong to by primary association. In other words, the Secondary AID Assignment

program establishes a secondary membership, called secondary association, so that some STAs have

two AIDs and thus, they can switch between the groups. The second AID to be given to some

STAs as a result of the secondary association is called secondary AID (or S-AID for short). Once

the secondary AID assignment is made, the following traffic scheduling program checks if there

is a chance to reduce the number of STAs that have to wake up unnecessarily. As illustrated by

example in Section. 4.3, if the pending traffic at the AP can be completely delivered by waking up
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Table 4.2: Summary of notations used in Chapter 4

M Number of TIM groups

G Set of TIM groups, {g(1), g(2), ..., g(M)}
n

(i)
s Number of sensory STAs in g(i)

S(i) Set of sensory STAs in g(i), {s(i)
1 , s

(i)
2 , ..., s

(i)

n
(i)
s

}

n
(i)
c Number of controllable STAs in g(i)

C(i) Set of controllable STAs in g(i), {c(i)
1 , c

(i)
2 , ..., c

(i)

n
(i)
c

}
y(i) Number of unused AIDs in g(i)

Λ(i) Arrival rates of sensory STAs in g(i), {λ(i)
1 , λ

(i)
2 , ..., λ

(i)

n
(i)
s

}

M(i) Arrival rates of controllable STAs in g(i), {µ(i)
1 , µ

(i)
2 , ..., µ

(i)

n
(i)
c

}
η Amount of energy waste from an unnecessary wake-up

less number of TIM STAs, then the AP re-arranges the traffic indication bits in both DTIM and

TIM message by taking advantage of the S-AID.

4.5 Problem Formulation: Secondary AID Assignment

The first part of the proposed scheme is to establish secondary associations for some STAs if

there are unused AIDs. Since the number of unused AIDs is limited, we cannot allow all STAs to

establish the secondary association. In this regard, we propose to chose controllable devices and let

them be assigned S-AIDs, since they are the ones that mainly cause frequent unnecessary wake-ups

to other STAs. The classification of STAs into either sensory or controllable group depends only on

their traffic arrival rates, which are, as aforementioned, known in advance or can be learned during

operation. Before we proceed, please note that the notations used in the remainder of the chapter

are summarized in Table 4.2.

4.5.1 Classifying Stations

The purpose of the classification is to make a list of controllable STAs which have higher traffic

arrival rates, and eventually to pass the list to the Secondary AID Assignment program which
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Algorithm 3 Classification Algorithm

1: for each g(i), i=1 to M do

2: R = {r1, r2, · · · , rj , · · · , rN(i)} // traffic rates

3: Rmin = min(R), Rmax = max(R)

4: S ← number of steps

5: ∆ = (Rmax −Rmin)/S

6: sum∗, thr∗ ←∞
7: for t=1 to S-1 do

8: thr = Rmin + t ·∆
9: sum =

∑N(i)

j=1 |thr − rj |
10: if sum < sum∗ then

11: sum∗ ← sum, thr∗ ← thr

12: end if

13: end for

14: for each STA j=1 to N(i) do

15: if rj ≤ thr∗ then

16: S(i) = S(i) ∪ {STA-j} // mark as sensory

17: Λ(i) = Λ(i) ∪ {rj}
18: else

19: C(i) = C(i) ∪ {STA-j} // mark as controllable

20: M(i) =M(i) ∪ {rj}
21: end if

22: end for

23: n
(i)
s = |S(i)|, n(i)

c = |C(i)|
24: end for

decides whether or not to assign an S-AID to each STA in the list. Although the classification

procedure can be as complex as we want it to be, we have chosen a simple algorithm in order for

it to be scalable. One extremely simple, yet working, solution is to mark all STAs as controllable.

However, it maximizes the search space for the secondary AID assignment problem and thus, it

rather increases the overall runtime. In this regard, we have designed a simple algorithm, Algo. 3,

which finds a threshold point by which STAs are classified.

Algo. 3 iterates over each group and classifies STAs into one of the two groups, i.e., sensory or

controllable. The set R (line 2) represents the traffic rates of all STAs in g(i), where N (i) is the

number of STAs in g(i). The design parameter S (line 4) determines the number of iterations to
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search for the best threshold. The step size is equal to the range of traffic rates divided by S (line

5). On each iteration of the first inner for-loop (lines 7–13), the algorithm sets a threshold (line

8), calculates the sum of the distances between the threshold and all the traffic rates (line 9), and

records the so-far the best threshold that minimizes the distance sum (lines 10–12). Then, in the

later for-loop (lines 14–22), STAs are classified into either sensory or controllable by using the best

threshold point.

4.5.2 Expected Power Consumption

As a reminder, the overall goal of the proposed method is to reduce the number of unneces-

sary wake-ups and thus, to reduce the overall energy consumption. In order to find a secondary

association strategy that helps to reduce such wake-ups most, we first define the expected power

consumption from the unnecessary wake-ups of sensory STAs2. Let us first define the following

events: A(i) := there is at least one frame buffered at the AP for g(i) in time t (i.e., a DTIM

interval); a
(i)
j := there is at least one frame buffered at the AP for s

(i)
j in time t; and ¬a(i)

j := there

is no frame buffered at the AP for s
(i)
j in time t. Also, let p

(i)
j be the probability that, after time

t, s
(i)
j wakes up unnecessarily, meaning that s

(i)
j has to wake up to receive a TIM beacon while

there is no frame buffered for it. Using the superposition property of the Poisson process and the

independence of the arrival process, we can derive the following equations.

p
(i)
j = Pr(A(i))Pr(¬a(i)

j |A
(i)) (4.1)

= Pr(¬a(i)
j ∩A

(i)) (4.2)

= Pr(¬a(i)
j )Pr(A

(i)

−s(i)j

), (4.3)

where A
(i)

−s(i)j

is an event that g(i) is paged when s
(i)
j is excluded from the group. Given that the

number of sensory STAs in a TIM group is large and the their individual traffic rates are small,

the right hand side of Eq. (4.3) approaches to Pr(A(i)). This implies that with high probability a

sensory STA will see no buffered frame for it whenever it has to wake up and listen to the TIM

2Since the majority of the devices are sensory devices by the assumption, it does not make any notable difference
whether or not we take the controllable devices into consideration for the following calculation.
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beacon. That is, in the event of A(i), a sensory STA is highly likely to waste energy because

of its unnecessary wake-up. Based on this observation, we get the expected amount of energy

waste in time t for sensory STAs in g(i) as: Pr(A(i)) · n(i)
s · η, where η is the amount of energy

waste from an unnecessary wake-up, including the energy waste from making state transitions,

receiving/processing a TIM beacon and staying in active state. Note that we only consider the

energy waste from sensory STAs because the majority of STAs are sensory by assumption. In this

regard, we conclude that the expected energy waste from a group is proportional to the total arrival

rate to the group, and it is largely dependent upon the sum rate of controllable STAs whose arrival

rates are relatively larger than that of sensory STAs.

Therefore, providing an additional membership to controllable STAs, not sensory, and allowing

them to dynamically switch to another group will change the expected energy waste of the entire

network to a large extent. In what follows, we propose the optimal secondary association program

which selectively assigns the unused AID slots to some controllable STAs so as to minimize the

number of unnecessary wake-ups.

4.5.3 Problem Formulation

The secondary AID assignment problem in P. 4.4 finds the best strategy X that allows some

controllable STAs to make additional associations, and by which the number of sensory STAs

that wake up for nothing is minimized. To this end, we have set a counter-intuitive objective

function which is essentially to maximize the expected energy waste instead of minimizing it.

Note that the proposed method provides an alternative or extra membership to some STAs (i.e.,

securing a freedom of switching between groups for some STAs), and leverages it in an opportunistic

manner, while leaving the primary association as it is. The key idea of the proposed method is

to opportunistically merge buffered traffic to a smaller number of groups so that the number of

unnecessary wake-up events to sensory STAs is minimized. The opposite approach, e.g., balancing

the sum traffic rate over TIM groups, does not help to reduce the number of unnecessary wake-ups.
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The optimization problem P. 4.4 searches for the best secondary association strategy by which

the overall expected energy waste is maximized. As a result, each group has a higher chance of

turning other paged TIM groups into sleep by redirecting their traffic to itself, and serving them

during its own TIM interval.

max
X

.
M∑
i=1

δ(i) (4.4a)

subject to:

X
(i)
j,(k) ∈ {0, 1}, ∀i, j, k (4.4b)

M∑
i=1,
i 6=k

n
(i)
c∑
j=1

X
(i)
j,(k) ≤ y

(k), ∀k (4.4c)

M∑
k=1

X
(i)
j,(k) = 1, ∀i, j (4.4d)

In the objective function Eq. (4.4a), the term δ(i) indicates the increase in the expected amount

of energy waste due to the associated controllable STAs in TIM group i, which is explained in

detail as follows. As an extension of the previously defined event A(i), let us define the following

two more events, A
(i)
+c and A

(i)
−c. The event A

(i)
−c represents the case that there is at least one frame

pending at AP for TIM group g(i) when there is no controllable STA in the group. Similarly, A
(i)
+c

represents the same event except that it is for the case when the group has some controllable STAs,

and which controllable STA to associate with is determined by the decision variable X = {X(i)
j,(k)}.

In a mathematical expression, δ(i) is defined as:

δ(i) = [Pr(A
(i)
+c)− Pr(A

(i)
−c)] · n(i)

s · η

= e−
∑n

(i)
s

j=1 λ
(i)
j t(1− e−

∑M
k=1

∑n
(k)
c

j=1 µ
(k)
j X

(k)
j,(i)

t
) · n(i)

s · η.

The decision variable X
(i)
j,(k) is binary by the constraint Eq. (4.4b), and it is 1 when a controllable

STA j which already made a primary association with TIM group i is allowed to make a secondary

association with TIM group k, and 0 otherwise. In this regard, δ(i) measures how much more energy

will be wasted if a TIM group g(i) allows controllable STAs to associate with the group compared

to the case when the group does not allow any.
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The second constraint Eq. (4.4c) indicates that, for each TIM group g(k), the number of sec-

ondary associations allowed should not to exceed the number of unused AID slots in the group.

The reason why the index k is excluded at the outer summation is that if a controllable STA that

belongs to g(k) by the primary association happens to associate with the same group again through

the secondary association, it is regarded as the STA is not allowed to make a secondary association

and thus, the STA does not actually occupy/consume any AID slot. At last, each controllable

device is allowed to make only one secondary association by the constraint Eq. (4.4d).

4.5.4 Relaxation on Binary Constraints

The optimization problem P. 4.4 is not convex, in general, because of the combinatorial nature

of the secondary AID assignment whose complexity increases exponentially with the number of

controllable STAs and the number of groups [114]. The problem as it is might be solved in a

reasonable amount of time if the number of the binary variables is small, but that is not the case

for a large-scale 802.11ah network where an AP can associate with up to ∼8,000 STAs. In order to

transform P. 4.4 into a tractable, convex optimization problem, the binary constraint in Eq. (4.4b)

is relaxed into Eq. (4.5b) by letting each binary variable take any value in [0,1].

max
X

.

M∑
i=1

δ(i) (4.5a)

subject to:

X
(i)
j,(k) ∈ [0, 1], ∀i, j, k (4.5b)

constraints in (4.4c), (4.4d)

Due to the relaxation of the binary variable, however, X no longer tells a clear membership

relation since it is highly likely to be a real number between 0 and 1, not a binary number. Still,

the relaxed decision variables can be used in practice, for example, by interpreting them as either of

the following two cases. One is to let X
(i)
j,(k) be the time sharing factor that indicates the proportion

of time that STA j in g(i) can be temporarily associated with g(k). The other is to let X
(i)
j,(k) be the

probability that a corresponding association is allowed for each time. Although both interpretations
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Algorithm 4 Iterative one-by-one removal

1: repeat

2: Solve the relaxed optimization problem P. 4.5

3: for each group i do

4: (j∗, k∗) = arg min∀j,kX
(i)
j,(k) s.t. X

(i)
j,(k) 6= 0

5: Set X
(i)
j∗,(k∗) = 0

6: end for

7: until all X
(i)
j,(k) are binary

are practically feasible, they incur additional operational complexity to AP and energy consumption

to devices due to the frequent change of secondary association; in the worst case, all STAs may

have nonzero values for all X’s.

4.5.5 Recovering the Binary Solution

In order not to cause the aforementioned extra operational complexity and energy consumption,

we have applied a technique that iteratively obtains binary values from the non-binary solutions

from P. 4.5. Iterative one-by-one removal algorithm [36] [43] [44] [113] recovers binary solutions

from the relaxed ones as described in Algo. 4.

The Algo. 4 first solves the relaxed optimization problem P. 4.5. Next, it finds the nonzero

minimum X
(i)
j,(k) for each group. After forcing up to M number of such variables to be zero, the

algorithm returns to Step 2 in line 2 and repeats the whole procedure until all decision variables

X
(i)
j,(k) are binary. Note that on each iteration, instead of forcing multiple variables to be zero, forcing

one over all i, j and k would yield a better solution in terms of the optimality gap. However, as

the number of both controllable STAs and TIM groups increases, the one-variable-per-iteration

approach significantly increases the runtime of the procedure. In order to expedite the one-by-one

removal procedure, we have introduced the inner fop-loop which iterates over each group and thus,

the algorithm sets up to M variables to be zero for each outer iteration; in Section. 4.7.2, we show

that the expedited version still yields a small optimality gap.
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4.5.6 Notification Procedure

As a result of the Secondary AID Assignment procedure, some controllable STAs are chosen to

be given S-AIDs. The chosen STAs need to know which AID slots they can additionally associate

with, which can be done by one of the three methods in general, i.e., broadcast, unicast and

piggyback 3. Among those three, piggyback spends the least amount of energy in this case since

it minimizes the number of bits to be transmitted. Thus, in order to efficiently notify the selected

STAs of the decision on the secondary association (i.e., S-AIDs), an AP piggybacks an S-AID in

the first data to be delivered to the corresponding STA. It is worth mentioning that the secondary

association is a long-term decision, meaning that the notification is required only a few times

for each chosen STAs during their lifetime. Since the number of controllable STAs is small, and

the Secondary AID Assignment procedure chooses only some of them depending on the number

of available AID slots, the contribution of the notification procedure to the network-wide energy

consumption is trivial.

4.5.7 Discussion

According to [9, Section 4.3.1], “an AID can indicate a groups of STAs.” Considering that

the main cause of the unnecessary wake-up problem is for using a small number indicators (i.e.,

small number of bits in DTIM) to represent the pending traffic status for many STAs, it cannot

be a solution to the unnecessary wake-up problem. Rather, it may worsen the problem because

the maximum number of STAs that can be associated with a TIM group increases. However, the

single-AID-for-many-STAs can be beneficial to the proposed scheme in this chapter. The proposed

method uses unassigned AID slots to make secondary association. In the worst case, if the network

is so populated that there is no vacant slots at all, then the proposed scheme cannot make any

secondary association.

However, if an AP can group multiple STAs and then, assign a single AID for them, the number

of AIDs in use can be reduced. In other words, an AP can increase the number of unused/unassigned

3Piggyback can be regarded as a special type of unicast.
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AIDs, and thus to secure more freedom in making secondary association. In sum, if the single-

AID-for-many-STAs is used, the proposed method can make more secondary association for the

increased number of vacant AID slots. The tradeoff is an increased complexity. Since an AID no

longer clearly indicates a physical STA, there should be a mechanism to identify which physical

STA is referred to when an AID is paged. Since we are focusing on a low-complex, online scheduling

scheme in this chapter, we assume the basic mode, i.e., an AID refers to a single physical STA.

4.6 Algorithm Design: Traffic Scheduling

In this section, we propose a traffic scheduling algorithm that minimizes the number of unnec-

essarily waking up sensory STAs by taking advantage of the secondary associations made by the

Secondary AID Assignment procedure. On each DTIM interval, an 802.11ah-compliant AP con-

structs a traffic indication map for each group by using P-AID; let us denote this TIM message by

default TIM. In the proposed scheme, the AP also checks if it can reduce the number of unnecessary

wake-ups by using the secondary associations without missing any data to deliver. If it can, the

AP rearranges traffic delivery; if not, the AP uses the default TIM as it is.

4.6.1 Exhaustive Search

Intuitively, the optimal traffic scheduling strategy can be found by exhaustive search. It sched-

ules the buffered traffic in all possible ways and chooses the best one that minimizes the number of

unnecessary wake-ups. To be specific, the exhaustive search algorithm first enumerates all possible

permutations out of M TIM groups. Let us denote P as the set of permutations which has M !

elements, where the ith element p[i] = {g[1], g[2], · · · , g[M ]} is an ordered list of M TIM groups. Note

that g[1] is the first element in the list p[i] and it does not necessarily need to be g(1). On the ith

iteration, the AP takes a list p[i] from P. Starting from g[1], the AP rearranges the traffic delivery

such that as many P-AIDs and S-AIDs in the TIM group can be utilized as possible if there is

buffered traffic associated with those. Then it moves on to g[2] and so on up to g[M ]. After iterating

over all elements in P, it chooses the one with the least number of unnecessary wake-ups.
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4.6.2 The Proposed Fast Traffic Scheduling

Although the exhaustive search guarantees to yield the optimal scheduling strategy, it is not

suitable for an on-line processing for a large-scale network due to the high computational complexity.

Also, it consumes a large memory space because it has to temporarily store all possible permutations

of entire groups. In this regard, we propose a lightweight, fast traffic scheduling algorithm that

yields a comparable performance to the exhaustive search without causing the aforementioned

overhead. The proposed traffic scheduling algorithm is composed of three steps in sequence: 1)

Feasibility Check, 2) Preprocessing, and 3) Traffic Scheduling.

4.6.2.1 Feasibility Check

The proposed algorithm first checks if it is possible to reduce the number of unnecessary wake-

ups by examining the paged status of sensory STAs. Since sensory STAs are not able to change

their membership, having a buffered data for a sensory STA implies that the group to which the

STA belongs cannot help but waking up so as to listen to the TIM message. If every group

has at least one paged sensory STA, there is no room for improvement. Therefore, the proposed

algorithm immediately terminates, and the AP uses the default DTIM and TIM as they are for

delivering the buffered frames. On the other hand, if there is at least one group that does not have

any paged sensory STAs, there might be a chance that the group can stay in sleep even if some

controllable STAs in the group are paged. In such a case, the proposed algorithm proceeds to the

next Preprocessing procedure.

4.6.2.2 Preprocessing

The main purpose of having the preprocessing stage is to reduce the complexity of the following

Traffic Scheduling procedure. As aforementioned, a TIM group with at least one paged sensory

STA must wake up. Therefore, letting paged controllable STAs which made secondary association

with such a must-wake-up group switch to the group does not increase (or may decrease) the

number of overall unnecessary wake-ups. As a result, the must-wake-up TIM groups schedule as
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much traffic as possible by using both P-AID and S-AID, and then their scheduling is finalized.

Now, the remaining groups are either of the following two cases: 1) that do not have any paged

STAs, or 2) that only have one or more paged controllable STAs. For groups that belong to the

former case, finalize their schedule as they are. Finally, the remaining groups are the ones that

belong to the later case. If the number of the remaining groups is less than or equal to 1, terminate

the procedure and return the updated traffic delivery schedule; otherwise, proceed to the Traffic

Scheduling procedure.

4.6.2.3 Traffic Scheduling

This stage determines a traffic delivery schedule that minimizes the number of unnecessary

wake-ups by leveraging the secondary association which allows some STAs to temporarily change

their membership. Given that the remaining groups are the ones that have buffered traffic at AP

only for controllable STAs, the traffic scheduling procedure runs as follows. First, it calculates the

cost c(i) for all remaining groups by using Eq. (4.6):

c(i) =
1

np(i)
(α · ňpc(i) + ňsc(i)), (4.6)

where i is the group index, np(i) is the number of STAs associated with group i through P-AID

(i.e., np(i) is the number of STAs to wake up if the group is paged), ňpc(i) is the number of

paged controllable STAs associated with group i through P-AID, ňsc(i) is the number of paged

controllable STAs associated with group i through S-AID, and α is a positive weight to ňpc(i).

Next, the algorithm selects the group with the maximum cost. If there are multiple groups with

the same, maximum cost, the one with the smallest index will be chosen. The algorithm, then,

schedules as much traffic as possible to the chosen group by utilizing both P-AID and S-AID. These

steps iterate until there is no more group to schedule. According to the Eq. (4.6), the group that

has a smaller number of STAs to wake up (if paged), and also has a larger number of paged STAs

will be chosen first for having a largeer cost value. In addition, the design parameter α is set to

1 + 1e− 10 so as to further reduce the number of wake-ups by assigning a slightly larger weight to

the controllable devices with P-AID than those with S-AID.
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Algorithm 5 Proposed Traffic Scheduling Algorithm

1: Input: G, T // TIM group, default DTIM/TIM info.

2: // 1) feasibility check:

3: if every group has paged sensory STA then

4: Return T and terminate

5: end if

6: // 2) preprocessing:

7: for each group g(i) ∈ G do

8: if g(i) has paged sensory STA then

9: Schedule as much traffic as possible to S-AID in g(i)

10: Update T
11: G ← G − {g(i)}
12: end if

13: end for

14: if |G| ≤ 1 then

15: Return T and terminate

16: end if

17: // 3) traffic scheduling:

18: repeat

19: Calculate the cost c(i) for ∀g(i) ∈ G
20: i∗ = min {arg maxi c(i)}
21: Schedule as much traffic as possible to S-AID in g(i∗)

22: Update T
23: G ← G − {g(i∗)}
24: until G is empty

25: Return T and terminate

The overall procedure of the proposed scheduling algorithm is shown in Algo. 5, where T is the

set of the default DTIM and all TIM messages. Please note that the traffic delivery for those groups

that are not mentioned in the algorithm will be made as specified by the default TIM. Compared

to the exhaustive search method of which search space (i.e., the number of groups to be explored)

is Θ(M !), the proposed scheduling algorithm reduces it down to O(M).

It is worth mentioning that the expected amount of additional delay caused by the proposed

method is zero compared to 802.11ah. On each DTIM interval, the proposed scheme delivers exactly

the same amount of traffic that 802.11ah has scheduled to. In addition, the expected amount of

delay within a DTIM interval is also zero. Let d(i) be such a delay that STAs in g(i) experience on
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traffic delivery, which is defined as:

d(i) =

n
(i)
c∑
j=1

M∑
k=1

Pr(X
(i)
j,(k) = 1)τi,k, (4.7)

where τ
(i)
j,(k) is an increase/decrease in time to traffic delivery when a STA j in g(i) by P-AID is

served in g(k). We have τ
(i)
j,(k) > 0 if g(k) is served after g(i), τ

(i)
j,(k) < 0 if g(k) is served before

g(i), and τ
(i)
j,(k) = 0 if k = i. Note that sensory STAs are not allowed to change their membership

and thus, they do not contribute to d(i) at all. Since we do not make any assumption on how

the primary association is made, an event X
(i)
j,(k) = 1 is regarded to be equally likely among all

possible k = 1, 2, · · · ,M . Then, the expected amount of delay increase cancels that of decrease and

therefore, Eq. (4.7) becomes zero. That is, the expected delay caused by the proposed method is

zero.

4.7 Evaluation

We have implemented both the optimal Secondary AID Assignment problem and the Traffic

Scheduling algorithm on CVX [50] and MATLAB [49], and compared the performance of the

proposed scheme to 802.11ah and the exhaustive search method.

4.7.1 Network Configuration

Evaluation has been performed with various number of TIM groups, each of which can associate

with up to 64 STAs [8]. Also, we consider TIM groups in a single page, which can associate with

up to 2048 STAs in total. Due to the advanced antenna technology, an AP can interact with STAs

in one page independently from the rest, for example, by using the sectorized beam operations

[9]. Therefore, the results to be shown in this section should remain the same whether or not we

consider multiple pages at the same time. The traffic arrivals follow the Poisson distribution whose

mean value is randomly chosen. Also, the primary association is randomly made and thus, each

group is highly likely to have different number of STAs and different sum traffic rate from the rest.

Each data point on the figures in this section is an average of several runs of simulation, except
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Fig. 4.9. To be specific, we have run 10 simulations for both Fig. 4.3 and Fig. 4.4. Also, for Fig. 4.5,

Fig. 4.6, Fig. 4.7 and Fig. 4.8, we have run 100 simulations. For each data point in those figures,

we have marked a 95% confidence interval. Please note that we have omitted the result of the case

when M = 1, since the scenario is too simple and it does not allow any secondary associations to

make; in other words, there will be no performance difference between the proposed scheme and

802.11ah.

4.7.2 Secondary AID Assignment & Optimality Gap

As discussed in Section 4.5, we have applied relax-and-recover approach (Algo. 4) to the Sec-

ondary AID Assignment problem in order to maintain the overall complexity low and to make the

initial problem (P. 4.4) tractable. Considering that the objective value of the original problem

P. 4.4 is upper-bounded by the relaxed problem P. 4.5, and lower-bounded by the recovered binary

solution, we first show that the optimality gap between the two bounds is tight, implying that the

recovered binary solution has a high accuracy.

The Fig. 4.3 shows how the objective value changes as the number of TIM groups increases. In

the figure, Relaxed and One-by-one removal correspond to the solution of the relaxed association

problem P. 4.5 and the recovered binary solution from running Algo. 4, respectively. Although

the objective value of the relaxed problem is always larger than that of the recovered solution,

the difference is small, meaning that the recovered solution has high accuracy. Also, we have

measured the relative error between the two solutions as shown in Fig. 4.4. The y-axis denotes the

ratio of difference between the two objective values to the objective value of the relaxed problem.

Throughout all scenarios with different number of TIM groups, the mean error ratio never exceeds

0.005. That is, the bounds on the initial problem P. 4.4 are small and thus, the recovered solution

is close to the optimum.
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Figure 4.3: Comparison of the optimal objective values between the relaxed problem solution and

the recovered binary solution.

4.7.3 Traffic Scheduling & Number of Unnecessary Wake-ups

Next, we introduce the simulation results to show how effective the traffic scheduling algorithm

is in terms of the number of unnecessary wake-ups. We compare the number of such energy-wasting

wake-ups between 802.11ah, exhaustive search and the proposed method. Since the three methods

deliver exactly the same amount of traffic on each DTIM interval, having a smaller number of

wake-ups yields a better energy efficiency.

Both Fig.4.5 and Fig. 4.7 show the mean number of total unnecessary wake-ups with different

number of TIM groups. Note that due to the high complexity of the exhaustive search method
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Figure 4.4: The ratio of the difference between the objective values of the relaxed and the recovered

binary solution to the objective value of the relaxed solution.

in terms of time and memory space, we were able to run it with up to 10 TIM groups of which

results are shown in Fig.4.5. The proposed method, on the other hand, has a short response time

and requires only a small memory space. Thus, we have carried out all possible scenarios, i.e.,

with up to 32 TIM groups, as shown in Fig. 4.7. As it can be seen in Fig.4.5, both exhaustive

search and the proposed algorithm outperform 802.11ah in terms of the number of unnecessary

wake-ups. As the number of both TIM groups and STAs increases, a larger freedom in making

secondary association is exploited and thus, the performance enhancement compared to 802.11ah

becomes larger for both exhaustive search and the proposed algorithm. It is noteworthy that the
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Figure 4.5: The mean number of unnecessarily waking-up STAs per DTIM interval with different

number of TIM groups.

proposed scheme yields a comparable performance to the exhaustive search solution, although it

has a much smaller computational and resource overhead. In addition, we have counted the number

of unnecessary wake-ups for sensory STAs separates from that for controllable STAs as shown in

Fig. 4.6. Since there are more sensory STAs than controllable by assumption, three lines with larger

values than the rest indicate the number of unnecessary wake-ups for sensory STAs, while the three

with lower values are for controllable STAs. As it can be seen in the figure, 802.11ah produces

the largest number of unnecessary wake-ups for both sensory and controllable STAs. Although the

Secondary AID Assignment problem focuses on minimizing energy waste from sensory STAs, both
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Figure 4.6: The mean number of unnecessarily waking-up sensory and controllable STAs per DTIM

interval with different number of TIM groups.

the proposed method and the exhaustive search still outperform 802.11ah in terms of the energy

waste from controllable STAs as well.

The following Fig. 4.7 shows the number of unnecessary wake-ups for both 802.11ah and the

proposed method as the number of TIM groups increases up to 32. Again, we have separately

shown the unnecessary wake-ups for sensory and controllable STAs in Fig. 4.8. As the number

of both TIM groups and STAs increases, the difference in the number of unnecessary wake-ups

becomes larger between 802.11ah and the proposed scheme, meaning that the proposed scheme
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Figure 4.7: The mean number of unnecessarily waking-up STAs per DTIM interval with different

number of TIM groups.

brings more gains to enhancing energy efficiency. For instance, when there are 32 TIM groups, the

proposed scheme, on average, incurs 632.6 unnecessary wake-ups, while 802.11ah does 935.7.

The performance enhancement in [0,1] scale can be measured by the ratio of the difference in the

number of unnecessary wake-ups between 802.11ah and the proposed scheme to that of 802.11ah.

Except the case of M = 2 which results in a ratio of 0.210, the performance enhancement is between

0.303 and 0.378 for the rest of M values, meaning that at least 30% of more devices are able to stay

in low-power state when the proposed scheme comes into play compared to the 802.11ah power
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Figure 4.8: The mean number of unnecessarily waking-up sensory and controllable STAs per DTIM

interval with different number of TIM groups.

saving mechanism. As a reminder, both schemes deliver exactly the same amount of traffic, and

the proposed scheme causes, on average, zero delay compared to 802.11ah.

As studied in [115], the basic power model for power consumption of the receiving circuitry

can be modeled as a constant. Therefore, the amount of energy waste due to the unnecessarily

waking-up STAs can be simply approximated by a linear function of the number of unnecessary

wake-ups, in addition to the constant power usage for staying in active state. Considering the

expected lifetime of 802.11ah STAs, and the number of DTIM intervals that STAs are expected to
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Figure 4.9: Example: the number of unnecessarily waking-up STAs during the first 10 iterations

when the number of TIM groups is 8.

encounter during operation, reducing the number of unnecessary wake-ups will significantly prolong

the lifetime of STAs as well as the whole network.

Yet, the computational and memory efficiency of the proposed scheme comes at the expense of

the performance degradation compared to the exhaustive search method as shown in Fig. 4.9. On

iterations 9 and 10, exhaustive search outperforms the proposed method in terms of the number of

unnecessary wake-ups. However, the amount of performance degradation is trivial, and it becomes

negligible as the iteration goes on as shown in Fig. 4.5.
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4.8 Conclusion

In this chapter, we have studied a large-scale IEEE 802.11ah wireless sensor network. In par-

ticular, we have focused on the energy efficiency of power saving mechanism on top of TIM and

page segmentation. To reduce the power consumption of battery-operated sensor devices, we have

proposed a novel way of utilizing unused AIDs and scheduling traffic delivery so as to reduce the

number of unnecessary wake-ups. The proposed temporary membership change scheme allows the

traffic scheduling algorithm to exploit a certain level of freedom in delivering buffered traffic and

thus, the number of unnecessary wake-ups is minimized. In order to expedite the entire procedure,

the relaxation and recovery scheme is applied to the optimization program, and a lightweight traffic

scheduling algorithm is proposed. The evaluation results show that the proposed algorithm can

significantly increase the number of sensor devices that can stay in low-power state, which could

prolong their lifetime without increasing delay to traffic delivery.
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CHAPTER 5. ENERGY-EFFICIENT SCHEDULING OF INTERNET OF

THINGS DEVICES FOR NEXT GENERATION WLANS: ENVIRONMENT

MONITORING APPLICATIONS

5.1 Summary

The Internet of Things (IoT) paradigm has been proposed to assist and automate various ac-

tivities such as environment monitoring by connecting physical devices in the area of our interest.

Low-cost, battery-operated, and resource-limited IoT devices usually are densely deployed for ro-

bustness against node failures as well as for providing desired quality of monitoring. One of the

effective ways to prolong the lifetime of an IoT network is to schedule selected IoT devices to enter

the sleep mode and activate them later in a future time. However, this must be done carefully

in order not to violate application-specific requirements. In this chapter, we study the scheduling

problem of IoT devices to prolong the network lifetime while satisfying both report error/accuracy1

and timely update (or reporting interval) requirements. We model and analyze the network as a

Markov process, and derive system parameters. We formulate an optimal node activation scheduling

problem and propose a low-complex greedy algorithm to expedite the scheduling process. Evalu-

ation results demonstrate the effectiveness of both optimal and greedy algorithms. The complete

version of this chapter has been published in [116].

5.2 Introduction

Low-power, low-cost devices with sensing modules have been widely used in our daily lives as

well as in special circumstances for particular missions such as environment monitoring and target

tracking. Despite such devices’ limited computing power and energy supply, they have become

the essential component for Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Such

1In this study, we use the report accuracy requirement and the report error requirement interchangeably.
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trend is expected to prosper by IEEE 802.11ah TG (Task Group) [9] that is intended to provide a

unified wireless communication solution for large-scale IoT networks. To be specific, an 802.11ah-

compatible AP (Access Point) is capable of associating with up to 8,192 devices with a coverage

radius of about 1 km [85].

Although 802.11ah has built-in power saving methods [85], energy efficiency is still one of the

biggest challenges for many IoT applications. This is because IoT devices (referred to as nodes) are

battery-operated, and it may not be cost-effective or even possible to recharge or replace batteries

in some applications, e.g., environment monitoring of an inaccessible terrain. In general, nodes are

densely deployed in an IoT network for connectivity and coverage as well as for dealing with nodes’

high failure rates [117]. Highly-populated nodes, however, increase the channel contention for the

shared medium as well as produce redundant sensed readings, which decreases the overall energy

efficiency and the network lifetime.

One effective way to prolong the network lifetime is to operate some of the nodes in the sleep

mode and activate them later in a future time. However, the reduced number of active nodes

may degrade the system performance, such as the accuracy of the fusion report in environment

monitoring applications. Also, the reduced number of active nodes may result in a violation of some

application-specific requirements, such as maximum update interval or maximum delay requirement

in environment monitoring applications.

In this chapter, we study the problem of energy-efficient activation/sleep scheduling of IoT de-

vices to maximize the network lifetime for environment monitoring applications. Here, the network

lifetime refers to the time period during which the network operates properly without violating

any application-specific requirements. As shown in Fig. 5.2, we consider a clustered IoT network

with multiple fusion centers (FCs) serving as cluster heads to collect sensed readings from IoT

nodes and then transmit the fusion reports to the AP. We consider the following two requirements:

(1) [report error/accuracy requirement] maximum error in the fusion report created by the FC,

assuming that each sensed reading has an inherent measurement error; and (2) [timely update (or

reporting interval) requirement] maximum reporting interval from the FC to the AP.
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Figure 5.4: System model.

To do so, we first model and analyze the network as a Markov process. Then, we compute the

optimal number of nodes to activate, and configure the FC to satisfy the requirements. Finally,

given the optimal number of nodes to activate, we formulate an optimal node scheduling problem

to determine the set of nodes to activate by taking into consideration the nodal residual energy.

The problem is formulated as a mixed integer linear program (MILP) problem that is intractable

in general; thus, we also propose a low-complexity greedy algorithm to solve the problem.

The rest of this chapter is organized as follows. The network model and problem formulation are

given in Section 5.3. We analyze the network in Section 5.4. In Section 5.5, we derive an optimal

node scheduling algorithm, and propose a practical greedy algorithm with a lower complexity.

Evaluation results are presented in Section 5.6. Finally, we conclude the chapter in Section 5.7.

5.3 System Model and Problem Overview

5.3.1 Models and Assumptions

We study a clustered 802.11ah-compatible IoT network for environment monitoring applications.

As shown in Fig. 5.2, many battery-operated and resource-limited IoT devices (referred to as nodes)
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are deployed uniformly at random in the area to be monitored, while multiple FCs are deployed

to relay the data from IoT devices to the AP in the form of fusion reports. Each FC has a stable

power supply and can communicate directly with the AP. An FC associates with the nodes within

its transmission range, forming a cluster. We use W to denote the set of nodes in a cluster. If a

node is within the transmission range of multiple FCs, it associates with the one with the strongest

signal strength.

An active node senses the environment (e.g., temperature, sound, light, or vibration) and trans-

mits the sensed readings (referred to as data) to the FC. After collecting multiple sensed readings

from its associated nodes, the FC takes a sample mean, and transmits only the mean value (referred

to as report) to the AP. For the small size of the message to be transmitted from a FC to the AP,

each FC can minimize both the time to occupy the wireless medium and the probability of having

an error in the transmitting signal. In this study, we use reporting interval to refer to the time

interval between two consecutive reports from the FC to the AP, as illustrated in Fig. 5.3.

5.3.1.1 From IoT Devices to the Fusion Center

We make the following assumptions on the sensed readings generated by IoT devices of the same

cluster within the lth reporting interval: (1) they are generated according to a Poisson distribution

with a rate of λ which is the aggregate data rate of all nodes (W) in the same cluster; (2) their

values are i.i.d. (independent and identically distributed) random variables, with a mean of Dl

and a variance of σ2, where σ2 can be viewed as the sensing/measurement error. We assume that

nodes are homogeneous with inexpensive hardware and simple software; thus, they have the same

measurement error of σ2 and the same fixed data generation rate of λ/|W|. Each node has a limited

amount of energy supply without any energy harvesting or energy replenishment capabilities. We

assume that each FC has a buffer of finite size B, in which up to B number of data can be stored.

All the received data are stored in the FC’s buffer, until the FC takes a sample mean and transmits

the fusion report to the AP. If the buffer becomes full, the FC discards any new data arrivals. Once

the FC transmits a report to the AP, it flushes its buffer.
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5.3.1.2 From the Fusion Center to the AP

We assume that the reports from the FC to the AP also follow a Poisson distribution with a rate

of µ. Different from IoT devices, the FC can adjust its reporting rate µ dynamically. We assume

that µ is discrete, and it is adjustable between [µmin, µmax] with a step size of ∆µ. Clusters are

assumed to be independent of each other. Thus, we focus our study on a single cluster in the rest

of this chapter. The optimal solution derived from a cluster can be easily applied to the rest of the

clusters. In 802.11ah, each node is assigned a unique identifier, called AID (association ID). Nodes

are partitioned into different clusters based on their AIDs. The restricted access window (RAW)

method – which is one of the most noteworthy features in 802.11ah – provides each cluster with

a dedicated time interval to access the channel exclusively. By limiting the number of nodes that

are allowed to compete for the shared wireless medium at the same time, the RAW scheme reduces

channel contention, while increasing the time period during which nodes can enter the sleep mode

or low-power state.

5.3.2 Problem Statement

For each cluster, our goal is to schedule the activation of IoT nodes to maximize the lifetime of

the cluster. Recall that the lifetime of a cluster refers to the time period during which the cluster

operates properly without violating any requirements. Clearly, having too many active nodes may

generate redundant sensed readings and deplete their battery fast. On the other hand, having too

few active nodes may render the FC’s report (i.e., sample mean) less accurate. In addition, even

if the optimal number of nodes to activate is known, the schedule of node activations may greatly

affect the lifetime of a cluster. In this regard, we formulate an energy-efficient node scheduling

problem as follows.

Given:

� the set of nodes W = {w1, w2, · · · , w|W|} in a cluster,

� the total arrival rate λ of sensed readings,
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� the nodal residual energy φ(wa), ∀wa ∈ W,

� the measurement error σ2, and

� the buffer size B at the FC,

with the following constraints (or application requirements):

� report error/accuracy requirement: the error in a fusion report should not exceed the expected

error bound σreq with probability 1− pe at least, and

� timely update (or reporting interval) requirement: the reporting interval (on average) should

not exceed the maximum expected reporting interval τreq,

the outputs of the proposed scheme are:

� the optimal reporting rate µ∗ of the FC,

� the optimal number of nodes η∗ to activate, and

� the optimal node activation schedule,

such that the lifetime of a cluster is maximized. The terminating condition of the proposed

method is: |{wa : ∀wa ∈ W such that φ(wa) ≥ φthr}| < η∗, where φthr is the minimum residual

energy for an IoT node to function normally. That is, when the number of nodes with enough

residual energy is smaller than η∗, the proposed scheme terminates since the cluster can no longer

satisfy one or both requirements.

5.3.3 Overview of the Proposed Solution

To achieve the goal, we propose a 3-staged solution as illustrated in Fig. 5.5. In the Network

Analysis stage, we first model and analyze the network by using a Markov process, and based on

which we compute the least number of nodes (η∗) to activate without violating any of the application

requirements. Also, we compute the optimal µ∗ at which the FC shall report to the AP. Then, in

the Optimal Node Scheduling stage, we derive an optimal scheme to schedule the node activation
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Figure 5.5: Overview of the proposed solution.

by taking into consideration the residual energy of each node so that we can determine the set

of nodes to activate to maximize the cluster lifetime. Afterwards, in the Monitoring stage, the

chosen η∗ nodes are activated and sensing the environment. Since the proposed scheme activates

the optimal (or minimal) number of nodes, even a single failure among the operating nodes (e.g.,

by depleting the battery) causes the violation of one or both requirements. Then, the proposed

solution enters the Optimal Node Scheduling stage again to choose another η∗ nodes to activate.

In this study, the way to satisfy the requirements are based on the mathematical analysis, which

helps to build a more practical and robust solution than the heuristic ones. By considering the direct

relation between the nodal residual energy and the cluster lifetime, the proposed solution performs

better than the methods of which solutions are produced based on some indirect relations instead

(e.g., maximizing a utility function). In the proposed solution, the FC can adapt its behavior by

configuring its reporting rate µ, so that it can adjust to the network dynamics to meet the goal

and the requirements. The proposed solution is automated and scalable, and thus is promising for

the large-scale IoT applications.
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Figure 5.6: Markov chain model for the FC (Fusion Center).

5.4 Network Modeling and Analysis

Let {Xt}t≥0 be a continuous-time stochastic process that takes a value from a countable set

B = {0, 1, 2, · · · , b, · · · , B} at time t ≥ 0. Here, B is a finite set since the FC discards any new

arrivals when its buffer is full. By Xt = b (i.e., b is the state of Xt), we mean that the FC has b

number of data in its buffer at time t. When Xt < B, the state of the process is increased by 1, if

there is a new arrival from an active node. Since the shared wireless medium can be occupied by at

most one device at a time, the state cannot be increased by more than 1. The state of the process

returns to 0 when the FC transmits a report to the AP and flushes it buffer. The amount of time

spent in a state (referred to as holding time) is continuous, and the next state transition, given the

present state, is independent of the past. Thus, {Xt}t≥0 is a continuous-time Markov process with

the holding time in each state being exponentially distributed. The corresponding continuous-time

Markov chain (CTMC) is shown in Fig. 5.6.

Let W = {w1, w2, · · · } be the set of nodes in a cluster. Arrivals from an active node to the FC

is independent of the arrivals from other nodes, and the total rate at which the CTMC transitions

to the right is λ, given the current state is not B. On the other hand, the CTMC transitions to

state 0 at rate µ, given the current state is not 0; please note that the FC does not report to the

AP when it has no data in its buffer. Let Q = [qij ](i,j)∈B×B be the transition rate (or infinitesimal



www.manaraa.com

121

generator) matrix where qij is the rate at which the CTMC transitions from state i to state j.

Q =



−q01 q01 0 . . . 0

q10 −(q10 + q12) q12 . . . 0

q20 0 −(q20 + q23) . . . 0

... 0 0
. . .

...

qM0 0 0 . . . −qM0


Here, we have qii = −qi where qi =

∑
∀j 6=i qij is the total outgoing rate from state i.

From the CTMC with the rate matrix, we can derive an embedded discrete-time Markov chain

(DTMC) with exponential holding time. From DTMC, we know that all the states communi-

cate with each other, forming one communication class, and thus, both DTMC and CTMC are

irreducible. An irreducible DTMC with a finite state space is always recurrent (i.e., all states

are recurrent), and so is the equivalent CTMC. Also, the CTMC is non-explosive (or regular)

since the state space is finite. Since {Xt}t≥0 is irreducible and recurrent, we can compute the

stationary distribution π = {π1, π2, · · · , πB} by using both the global balance equation (i.e.,∑
∀j 6=i πi × qij =

∑
∀j 6=i πj × qji) and

∑
∀i∈B πi = 1. Let ρ = λ

λ+µ ; then, we can compute πi

for all states i as shown below, where πi is the proportion of time spent in state i over a long period

of time.

πi =



{
1−ρB
1−ρ + λ

µρ
B−1

}−1
, for i = 0.

ρi
{

1−ρB
1−ρ + λ

µρ
B−1

}−1
, for 0 < i < B.

λ
µρ

B−1
{

1−ρB
1−ρ + λ

µρ
B−1

}−1
, for i = B.

Given that {Xt}t≥0 has a unique sum-up-to-1 stationary distribution, the process is positive recur-

rent.

By using the stationary distribution π, we can compute the expectation of (1) the number of

sensed readings buffered and used by the FC to take the sample mean for a reporting interval, and

(2) the length of a reporting interval. The finding in (1) is used to check if the error in a fusion

report does not exceed the error bound σreq with probability 1−pe (at least), and the finding in (2)

is used to make sure if the reporting interval (on average) does not exceed the maximum expected
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reporting interval threshold τreq. By combining the two findings together, we can determine both

the optimal number of nodes to activate and the optimal reporting rate of a FC to satisfy the two

requirements.

5.4.1 Report Error/Accuracy Requirement

Let U l be a random variable for the number of buffered data that the FC uses to calculate

the sample mean within a reporting interval l. For example, if U l = b ∈ B, it means that the FC

has calculated and reported a sample mean with b sensed readings, and hence CTMC has made

a transition from state b to state 0. By using the stationary distribution π, we can compute the

expectation of U l as: E[U l] = 1
1−π0

∑B
i=1 i×πi. The summation term is normalized by 1−π0 since

there is no transition from state 0 to itself. Also, let Dl
m be a random variable for the value of the

mth sensed reading that arrives at the FC within a reporting interval l. Since Dl
m’s are i.i.d. by

assumption, the sample mean for the reporting interval l is a random variable Sl = 1
U l

∑U l

m=1D
l
m.

By the Central Limit Theorem, Sl follows the Normal distribution with a mean of Dl and a variance

of σ2/U l.

Let us assume that Sl has a finite expected value E[Sl] and a finite non-zero variance V ar[Sl].

Then, from the well-known Chebyshev’s inequality, we have the report error requirement as follows

for any real number a > 0,

Pr{|Sl − E[Sl]| ≥ a} ≤ V ar[Sl]

a2
. (5.1)

Equivalently, Eq. 5.1 can be also expressed as:

Pr{|Sl − E[Sl]| ≥ a× Std[Sl]} ≤ 1

a2
, (5.2)

where Std[Sl] is the standard deviation of Sl. By the Law of Large Numbers, E[Sl] is close to the

expected value or the true value. Then, Eq. 5.2 can be viewed as Pr{|error| ≥ σreq} ≤ pe with

a ≥ 1. As a reminder, σreq is the report error bound and pe is upper bound on the report error

probability.

Both σreq > 0 and pe > 0 are given as inputs and determined by the application or its operator.

By rearranging pe = 1
a2

, we have a =
√

1/pe > 0. Similarly, by rearranging σreq = a × Std[Sl],
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we can compute the expectation of the least number κreq of sensed readings to be used at the FC

when taking a sample mean in order not to violate the report error requirement as follows:

E[U l] ≥

(√
1/pe × σ
σreq

)2

= κreq. (5.3)

In other words, this is the condition guaranteeing that the report error requirement is satisfied on

average. In the same manner, κreq is the requirement on the least number of sensed readings to be

used to make a sample mean to satisfy the report error requirement on average.

5.4.2 Reporting Interval Requirement

The reporting interval is the time interval for the CTMC to start at state 0 and then return to

state 0 for the first time. Please note that there is no direct transition from state 0 to itself. Let τii

be the smallest return time from state i to state i, i.e., τii = inf{t ≥ 0 : Xt = i,Xt− 6= i|X0 = i}.

Since {Xt}t≥0 is positive recurrent, we have E[τii] = 1
πi×qi <∞. Thus, τ00 is the reporting interval,

and from which the reporting interval requirement can be written as: τ00 ≤ τreq.

5.4.3 Computing the Optimal Number of Nodes to Activate

For a given µ, as the number of active nodes increases, the expected error of each sample mean

decreases since an FC can buffer more data during each reporting interval. Meanwhile, the expected

reporting interval decreases because of a shorter holding time in state 0. Let η∗ERR(µ) and η∗RI(µ)

be the minimum number of nodes to activate to satisfy the report error and reporting interval (or

timely update) requirements, respectively, for a given µ. Then, the minimum number of nodes to

activate to satisfy both requirements can be computed as η∗(µ) = max{η∗ERR(µ), η∗RI(µ)}.

Furthermore, as µ increases, the expected reporting interval decreases. Thus, η∗ERR(µ) has to

increase to guarantee the FC buffers enough number of data within a shorter amount of time. On

the other hand, as µ decreases, the expected reporting interval increases. Therefore, η∗RI(µ) has to

increase so that the FC can activate more nodes to reduce the holding time in state 0, in order not

to violate the maximum reporting interval threshold. To summarize, η∗ERR(µ) is a non-decreasing

function of µ, while η∗RI(µ) is non-increasing. Therefore, there exists at least one optimal µ that
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yields the minimum number of nodes to activate without violating any of the requirements; it will

be shown later by Fig. 5.11 in Section 5.6.2. Let µ∗ denote such an optimal µ, and let η∗ be the

smallest number of nodes to activate for µ∗. When there are more than one µ producing the same

optimal η∗, we choose the smallest one among the optima as µ∗.

5.5 Node Scheduling Problem and Algorithms

Given the optimal number of nodes to active η∗, we formulate an optimal node activation

scheduling problem to maximize the network lifetime by taking the residual energy of nodes into

account. In this chapter, the maximum network lifetime is achieved by maximizing the lifetime of

each cluster.

5.5.1 Optimal Node Scheduling: Problem Formulation

Nodes are partitioned into a set of groups G = {g1, g2, · · · }, and the proposed scheme activates

one group at a time. Here, we have |G| = G = bW/η∗c, where W = |W|. That is, the proposed

scheme activates the minimum number (η∗) of nodes to maximize the energy saving. The lifetime

of each group is determined by the node with the least amount of residual energy in the group.

That is, the lifetime of gb is proportional to min{φ(wa) : ∀wa ∈ gb}, where φ(wa) is a function that

returns the residual energy of node wa. By maximizing the sum of minimum residual energy over

all groups, we can form an optimal node scheduling problem as below (called P. 5.4).

max
Z

G∑
b=1

min{φ(wa) : ∀wa ∈ gb} (5.4a)

subject to: ∀b :

W∑
a=1

zab = η∗ (5.4b)

∀a :

G∑
b=1

zab ≤ 1 (5.4c)

∀a, b : zab ∈ {0, 1}, (5.4d)

where Z = [zab](a,b)∈{1,2,··· ,W}×{1,2,··· ,G} is a W -by-G membership indicator matrix with zab = 1 if

wa ∈ gb or 0 otherwise (i.e., binary relation as in Eq. 5.4d). Each group gb consists of η∗ nodes
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(Eq. 5.4b), and each node wa belongs to at most one group (Eq. 5.4c). We, then, transform P. 5.4

into an MILP formulation as shown below (called P. 5.5).

max
Z,Z,v

G∑
b=1

vb (5.5a)

subject to: constraints in (5.4b), (5.4c), (5.4d)

∀a, b : vb ≤ φ(wa)× zab + φmax × zab (5.5b)

∀a, b : zab + zab = 1, (5.5c)

where Z = 1W×G − Z (Eq. 5.5c) and φmax is the maximum battery capacity of a node. From

both Eq. 5.5a and Eq. 5.5b, we have vb = min{min{φ(wa) : ∀wa ∈ gb}, φmax}. The new objective

function (Eq. 5.5a) is equivalent to the previous one (Eq. 5.4a) as long as each group has at least

one node, which is always guaranteed by Eq. 5.4b. The optimal solutions Z∗ and v∗ ∈ RG indicate

which node belongs to which group and the set of the group-wise least residual energy, respectively.

The number of binary variables in P. 5.5 is W × G ≈ W 2/η∗, which could make the problem

intractable as the number of nodes increases. However, by carefully studying P. 5.5, we can reduce

the number of binary variables.

Let Φ = {φ[1], φ[2], φ[3], · · · , φ[W ]} be an ordered list of φ(wa) for a = 1, 2, · · · ,W , such that

φ[k] < φ[k+1].
2 Also, let g[k] be a group that the minimum residual energy among the nodes in the

group is the kth smallest among those values of all groups. For g[k], the set of residual energy of

the nodes in the group is denoted by Φ[k] = {φk[1], φ
k
[2], · · · , φ

k
[η∗]} such that φk[l] < φk[l+1]. For the

minimum residual energy, φk[1], of groups g[k] for all k = 2, 3, · · · , G−1, we have φk−1
[1] < φk[1] < φk+1

[1] .

Claim 1 (Optimal Node Partitioning):3 Given that Eq. 5.5a equals max
∑G

b=1 φ
b
[1], we

claim that an optimal partitioning of φ values4 (or an optimal node partitioning) is: Φ̂[1] =

{φ[k+1], φ[k+2], · · · , φ[k+η∗]}, Φ̂[2] = {φ[k+η∗+1], φ[k+η∗+2], · · · , φ[k+2η∗]}, · · · , Φ̂[G] = {φ[k+(G−1)η∗+1],

φ[k+(G−1)η∗+2], · · · , φ[k+Gη∗]}, where k = W − η∗ × bWη∗ c. The corresponding optimal v̂ vector is:

2We assume φ[k] is real-valued. Thus, without loss of generality, we assume that φ[k] 6= φ[k′] if k 6= k′.
3The proof of Claim 1 is available in Appendix B.
4Since each φ value is unique, we can derive the partitioning of nodes from the partitioning of φ values.
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[φ̂1
[1](= φ[k+1]), φ̂

2
[1](= φ[k+η∗+1]), · · · , φ̂G[1](= φ[k+(G−1)η∗+1])]

T . Also, v̂ is element-wise greater than

or equal to any other v = {φ1
[1], φ

2
[1], · · · , φ

G
[1]}, and thus, we have

∑G
b=1 φ̂

b
[1] ≥

∑G
b=1 φ

b
[1].

Given the optimal partitioning of nodes, we can make P. 5.5 more tractable by scheduling one

group at a time, thus reducing the number of binary variables. The modified problem P. 5.6 chooses

η∗ nodes to form a group ĝ[G], which is the set of nodes with residual energy being Φ̂[G].

max
z,z,v

v (5.6a)

subject to:
W∑
a=1

za = η∗ (5.6b)

∀a : za ∈ {0, 1} (5.6c)

∀a : v ≤ φ(wa)× za + φmax × za, (5.6d)

∀a : za + za = 1, (5.6e)

where z ∈ {0, 1}W denotes the membership relation between each node and ĝ[G], z = 1W − z,

and v ∈ R is the minimum nodal residual energy in ĝ[G], i.e., φ̂G[1] or φ[k+(G−1)η∗+1]. In P. 5.6, the

number of binary variables is W , which is much smaller than W 2/η∗ for a large W and a small η∗.

To summarize, we have formulated an optimal node scheduling problem P. 5.4 which partitions

all nodes in a cluster into G groups. The problem is then converted to an MILP formulation which

is P. 5.5. Finally, based on the analytical solution to P. 5.5 given by Claim 1, we have formulated

an optimal node scheduling problem P. 5.6 which chooses only η∗ number of nodes to activate to

reduce the complexity of the combinatorial optimization problem.

5.5.2 Optimal and Greedy Node Scheduling Algorithms

Given the optimal node scheduling for ĝ[G] from P. 5.6, we can derive an Optimal Node Schedul-

ing (ONS) algorithm which runs as follows. [Step 1] ONS runs P. 5.6 to choose η∗ number of nodes

to activate. [Step 2] When any of the active nodes does not have enough residual energy to operate,

remove/deactivate the node, and go back to [Step 1]. Please note that P. 5.6 is still an MILP. When

there are a small number of binary variables (e.g., < 50), an optimal solution can be found in a
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Algorithm 6 Optimal/Greedy Node Scheduling

1: if |W| < η∗ then

2: Terminate // infeasible, not enough nodes

3: end if

4: g ← {} // initialize to an empty set

5: if ONS is chosen then

6: z∗ ← Solve P. 5.6

7: g ← g ∪ {wa},∀a such that z∗a = 1

8: else if GNS is chosen then

9: while |g| < η∗ do

10: a∗ ← arga max{φ(wa) : ∀a ∈ idx(W − g)}
11: g ← g ∪ {wa∗}
12: end while

13: end if

14: while |g| = η∗ do

15: Activate nodes in g

16: if ∃wa ∈ g such that φ(wa) < φthr then

17: g ← g − {wa}, W ←W − {wa}
18: end if

19: end while

20: Go to line:1

negligible amount of time, but it is not always the case if the number of nodes in a cluster is large

or the processing power of the FC is limited.

To further reduce the complexity, we propose a Greedy Node Scheduling (GNS) algorithm that

produces the same node selection as ONS but with a much lower complexity of O(η∗W ). Given

that an optimal node selection for ĝ[G] is equivalent to finding nodes with residual energy of Φ̂[G]

= {φ[k+(G−1)η∗+1], φ[k+(G−1)η∗+2], · · · , φ[k+Gη∗]}, this can be done by choosing η∗ nodes with the

highest residual energy. Please note that φ[k+(G−1)η∗+1], φ[k+(G−1)η∗+2], · · · , φ[k+Gη∗] correspond to

(η∗)th, (η∗−1)st, · · · , 1st highest nodal residual energy, respectively, in a cluster. GNS has the same

two-step algorithm as ONS except in [Step 1], instead of solving P. 5.6, GNS iteratively selects a

node with the nth highest nodal residual energy where n = 1, 2, · · · , η∗ to activate. The algorithm

for ONS and GNS is given in Algo. 6.
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Algo. 6 first checks if the number of nodes in the cluster is at least η∗ (line 1); if not, it terminates

(line 2). Then, the set g is initialized to an empty set (line 4). For ONS, g is determined by the

solution to P. 5.6 (lines 5–7). On the other hand, GNS chooses nodes to activate by iteratively

searching for a node with the highest residual energy (lines 8–12). At line 10, the idx(·) function

returns the index set; e.g., idx({w1, w2, w7}) = {1, 2, 7}. When g is determined, all nodes in the

group become activated (line 15), while the others stay in the sleep mode to minimize the energy

consumption. The φthr (lines 16) is the battery threshold such that if the residual energy of a node

drops below the threshold, the node can no longer function properly. Any battery-drained nodes

will be removed from both g and W (line 17), and the algorithm starts over (line 20) from the

beginning.

5.6 Performance Evaluation

We have implemented the following five different node activation scheduling algorithms and

compared their performances with each other: ONS (Optimal Node Scheduling), GNS (Greedy

Node Scheduling), RNS (Random Node Scheduling), SNS (Sequential Node Scheduling), and in-

vGNS (inverse GNS). RNS activates nodes uniformly at random, SNS activates nodes with the

smallest AID5 first (which is similar to first-come, first-served), and invGNS activates nodes with

the least amount of nodal residual energy first, which is the exact opposite of GNS. Please note

that all five algorithms activate the same η∗ number of nodes at a time for a fair comparison. We

used Matlab [49] to solve the optimization problem P. 5.6 as well as to implement a simulator and

the five node scheduling algorithms.

5.6.1 Network Configuration

Unless stated otherwise, we use the following default simulation configuration. The FC is

associated with |W| = 50 nodes, and it can buffer up to B = 50 data. Each node has a fixed

sensing and transmit rate of 0.3 = λ/|W| (data per second, from a node to its associated FC). The

5As a reminder, when a node joins a 802.11ah-compatible network, it is assigned a unique identifier, called AID.
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variance of the sensed readings (i.e., the measurement error) is σ2 = 25. We assume the following

requirements:

� σreq = σ,

� pe = 0.1 (i.e., 10%), and

� τreq = 6 seconds (i.e., the AP expects at least one report every six seconds on average).

From the first two requirements, we can also compute the expected number of sensed readings to

be buffered at the FC and to be used to take a sample mean in order not to violate the report error

requirement. After plugging in pe, σ and σreq into Eq. 5.3, we get E[U l] = 10, meaning that, on

each interval, the FC needs to take a sample mean out of 10 or more data on average for the report

error requirement. Therefore, from now on we use κreq = 10.

For µ (i.e., the rate at which the FC shall transmit a report to the AP), we have µmin = 0.1,

µmax = 0.5, and ∆µ = 0.001. Considering that the radio module is one of the major sources

of energy consumption [118], we assume the following simplified energy model for nodes. At the

beginning, each node has a random amount of energy drawn from a uniform distribution, U(0, φmax],

where φmax = 100. Each node consumes one unit of power for generating one sensed reading or

transmitting one sensed reading to the FC; in this regard, φthr is set to 1. All results are averaged

over 50 simulation runs. We also have measured the 95% confidence intervals of the results, which,

however, are omitted from the figures as they are very small.

5.6.2 Computing the Optimal µ∗ and η∗

We first show how to compute the optimal µ∗ and η∗. The analytical results in Fig. 5.8 and

Fig. 5.9 show the expected duration of the reporting interval and the number of data to be used to

take a sample for each reporting interval, respectively, as the number of active nodes increases. As

shown in Fig. 5.8, with an increased number of active nodes, the expected duration of a reporting

interval decreases for each given µ. This is because the FC spends less and less time in state 0 as

the total incoming data rate increases. In fact, it approaches 1/µ as the number of active nodes
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Figure 5.8 The expectation of the reporting interval
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Figure 5.10: Expectation of the length of the reporting interval and the number of data buffered

in a reporting interval with respect to the number of active nodes.

increases. The reporting interval τ00 is the sum of the holding time in state 0 (denoted by τ0) and the

sum of holding times in non-zero states (denoted by τΣ) until the CTMC returns to the state 0 for the

first time. While τΣ is a function of both µ and λact, where λact = (the number of active nodes)×

λ/|W|, τ0 is dependent only on λact since there is no transition from state 0 to itself. As the number

of active nodes increases, so does the rate of data arrivals from nodes to the FC. Thus, the waiting

time until the first data arrival also decreases, resulting in the reduced reporting interval. As shown

in Fig. 5.8, if µ is too small, e.g., 0.100, the reporting interval requirement cannot be satisfied at

all. On the other hand, for larger µ’s, we can identify the smallest number of active nodes, on and

beyond which the reporting interval requirement is satisfied.

On the other hand, as shown in Fig. 5.9, the expectation of the number κreq of data to be

buffered and to be used to take a sample mean at the FC increases with the number of active

nodes for each given µ. This is because having more active nodes increases the data arrival rate

to the FC. In contrast to the reporting interval, a cluster was able to satisfy the κreq requirement

for any µ available, i.e., from 0.100 to 0.500. By the Law of Large Numbers, taking more data to
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compute the sample mean produces a more accurate report. Therefore, as the number of active

nodes increases the error in each report (or sample mean) decreases.

Since both the reporting interval and report error requirements have to be satisfied at the

same time for a given µ, we first take the smallest number of active nodes needed for each re-

quirement separately, and then, take the larger one to find η∗(µ) for a given µ, i.e., η∗(µ) =

max{η∗ERR(µ), η∗RI(µ)}. The trace of η∗(µ) for all available µ ∈ [µmin, µmax] is shown in Fig. 5.11.

For small values of µ ∈ [µmin, 0.168], the FC cannot satisfy the reporting interval requirement, and

thus, η∗ is set to 0 to signify infeasibility. When µ > 0.168, there exists a feasible η∗(µ) for each µ

forming a convex-like shape, and in the end, we have found that µ∗ = 0.184 to yield the smallest

η∗ = 6. Here, any µ yielding η∗ = 6 can be an optimal solution; yet, in the proposed scheme, the

minimum µ among optima is chosen.

5.6.3 Performance Comparison of the Node Scheduling Algorithms

We also have compared the cluster lifetime with respect to the number of nodes in a cluster, and

the results are plotted in Fig. 5.13. As shown in the figure, both ONS and GNS result in the longest

lifetime than other schemes. Also, the performance of GNS equals that of ONS with a much lower

complexity. The invGNS has the worst performance as it activates node in the exactly opposite way

of the GNS. The RNS outperforms SNS, showing that the randomization in node activation yields a

better performance than both SNS and invGNS. In addition, we have compared the cluster lifetime

with different maximum battery capacity when |W| = 50. That is, the initial nodal energy of each

node is drawn uniformly at random from the range (0, φmax], where φmax = 100, 300, · · · , 900. The

results are shown in Fig. 5.14. Again, both ONS and GNS outperform the rest with invGNS being

the worst.

5.7 Conclusion

In this chapter, we studied the problem of activation scheduling of IoT devices for environment

monitoring applications. We first analyzed the network of our interest by using a Markov process.
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From the stationary distribution of CTMC, we computed the minimum number of devices to ac-

tivate to satisfy both report error and timely update requirements. Then, we derived an optimal

scheduling algorithm for device activation that maximizes the cluster lifetime by taking into con-

sideration the nodal residual energy. We also proposed a greedy scheduling algorithm to produce

the optimal performance but with a significantly lower complexity. Evaluation results show that

the proposed schemes, ONS and GNS, can effectively prolong the network lifetime.
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CHAPTER 6. CONCLUDING REMARKS

In conclusion, this chapter summarizes the studies introduced in this dissertation from Chapter

2 to Chapter 5, and then, provides an overview of the future research directions.

6.1 Summary

In this dissertation, we have studied two networking systems, and for each we proposed an

optimal resource scheduling scheme from the perspective of energy efficiency. The discussed topics

are expected to play an important role in enhancing the current networking technologies as well as

making progress towards the next generation networks.

In Chapter 2, we have proposed a framework for a heterogeneous cellular network with which

a network operator can minimize the energy consumption while satisfying users’ quality of service

demand. By utilizing low-power smallcell base stations, users’ traffic demand can be satisfied with

less amount of energy consumption compared to the conventional cellular networks consisting only

of macro base stations. Given that the joint user association and resource allocation problem is

nonconvex, the problem formulation is split into two in order for it to be tractable. As a result, we

have an association problem and a resource scheduling problem. A relaxation technique has been

used to further reduce the problem complexity, and then, we have proposed an iterative method

to find an optimal resource allocation strategy. The proposed method is lightweight and can be

operated in a distributed manner, which all together allows the proposed method to operate in

realtime.

In Chapter 3, we have studied the resource optimization problem for C-RAN. By leveraging the

powerful computing capability and the centrality, a C-RAN can effectively allocate and utilize the

computation resource as well as the rest of the networking resources in a cost-efficient manner. In

addition, by taking advantage of the large coverage of macro base stations, heterogeneous C-RAN
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(H-CRAN) can further increase the resource utilization. In H-CRANs, RRHs do not need to be

densely deployed, alleviating the severe inter-tier interference problem between RRHs. In order

to effectively consider the uncertainties in both users’ mobility and their varying service demand,

we have proposed a multi-stage stochastic programming based resource provisioning and service

strategy. We have also proposed a new operation mode in which mobile network operators can

share their infrastructure in order to increase the overall resource utilization, while minimizing the

service outage. The proposed method optimizes a series of resources, including the VBS allocation

for each RRH, user-RRH association, channel allocation for users and resource allocation from a

different mobile network operator and its optimal usage, so that the mobile network operator can

maximize its profit while minimizing energy consumption.

In Chapter 4, we have studied a network with IEEE 802.11ah which is considered as a promising

WLAN standard for connecting a large number of IoT devices in a sub-1 GHz unlicensed band.

Despite the fact that an 802.11ah access point can associate with and manage a large number of

the resource-constrained, battery-operated devices in an energy-efficient and structured manner,

we have identified an energy waste problem that may reduce the lifetime the IoT devices and the

entire network. In order to minimize the energy waste from IoT devices without degrading the

overall network throughput performance, we have proposed an enhanced energy saving mechanism

for 802.11ah. Temporary membership change, which is the main idea of the proposed method,

allows IoT devices to switch between groups, and with which an 802.11ah network can increase the

number of devices that can stay in the low power state without being interrupted. The proposed

method is not only energy-efficient, but also tightly tailored for 802.11ah. The proposed traffic

re-ordering algorithm is low complex, and it does not increase the average delay in data delivery.

In Chapter 5, we have studied the effect of the sensing schedule (or the device activation

schedule) of battery-operated devices on the energy efficiency. We also have considered an IEEE

802.11ah network with an environment monitoring application. By analyzing the network we have

derived the optimal configuration for the network, i.e., the optimal reporting rate of the fusion

center and the optimal number of devices to activate to satisfy the application-specific requirements.
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Also, we have formulated a residual-energy-aware optimal device activation scheduling problem to

maximize the network lifetime. To reduce the time-complexity of the optimal scheduling scheme, we

proposed a low-complex heuristic algorithm of which performance is comparable to the optimum.

The evaluation results confirmed that the proposed optimal scheduling method and the equivalent

heuristic algorithm outperform the conventional device activation algorithms and maximize the

network lifetime without violating any of the system requirements.

6.2 Future Research Directions

The fundamental problems and challenges addressed in this dissertation build a foundation

on the research for the next-generation networking systems and applications. The cloud-based

networking system will play a key role in the future networks for its high processing power. Due

to the enormous volume of data to be collected from a large-scale IoT sensor network and mobile

users, the machine learning and artificial techniques need to be further developed to automate

the procedures such as network resource scheduling. Such a transition to the automated machine

learning based decision making process may provide a better understanding on the interaction

between the network and its serving users, revealing new applications and opportunities.

The cloud-based networking architecture C-RAN can provide an energy-efficient cellular service

as discussed in Chapter 3. As we have seen in both Chapter 4 and Chapter 5, the energy-efficient

operation of IoT devices can prolong the network lifetime, and as a result, data can be accumulated

for longer period of time. The next goal is to combine the two networks together so that we can

expedite the era of the fully-connected future networks. In this regard, we plan to continue carrying

out research in the following three interesting topics.

6.2.1 Unmanned Aerial Vehicle (UAV)-Assisted Network for Better Connectivity

IoT has a variety of applications, and one of which is to monitor a remotely-located and possibly

hazardous area. For such networks, it may not be a feasible plan to provide an additional network

infrastructure to connect the IoT network and the central computing and/or data center. One pos-
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sible solution is to utilize the UAVs (or drones) with a long-range cellular communication interface

to connect the two separated networks by relaying the sensed readings collected from IoT networks.

Optimizing the multi-hop relaying transmissions over a mesh UAV network is challenging for their

high mobility. What makes the problem more complicated is the delay constraints in delivering the

sensed readings. In some applications such as disaster monitoring, timely update of the changes in

the environment is very important. In this regard, we plan to propose an optimal data relay and

an interference management scheme for UAV networks, given the time constraints in data delivery.

6.2.2 Self-Configuration and Self-Healing Networks

As the network evolves into a much more complex structure (e.g., C-RAN), the traditional

network modeling techniques may not be a feasible solution to resource optimization. Severe

simplification of the system may allow the conventional resource optimization approach to be ap-

plicable, but the solution driven from such simplified models will be impractical and inefficient.

One effective solution is to let network optimize its resource usage by itself. Due to the larger set of

data collected from the network infrastructure and IoT devices as well as the powerful computing

resources available, a machine-learning based self-configuration approach can become more effective

in resource optimization. In addition, such an automated learning can be used to detect the failure

of the network infrastructure (e.g., base station) with a short delay. In this regard, we propose

to design a self-configuring and self-healing mechanism for the future network system to provide a

resource-efficient and breakout-free networking service to users.

6.2.3 Mobile Edge Computing for Tactile Internet with Ultra-Low Delay

The Tactile Internet (TI) is a promising application, and is considered as the next-generation

IoT. However, TI can be realizable only by combining the IoT network and H-CRANs (or C-

RANs). One major issue in realizing the TI is to guarantee a ultra-low end-to-end delay. In some

applications, the Tactile Internet requires a round-trip delay of 1 ms [7]. Although H-CRANs can

provide a high availability with reliable communication links, it may not be able to fulfill the delay
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requirement. For example, the fronthaul link between RRHs and the BBU pool can be a major

source of causing a delay. One practical solution is to put the processing units close to the end-users,

which is called Mobile Edge Computing (MEC) [128]. Some of the processing units can be placed

at the front-end base stations (i.e., RRHs), and then, the delay-sensitive user requests (or tasks)

can be processed therein. Such an architecture can significantly reduce the end-to-end delay. Also,

it can reduce the amount of traffic injected to the network, alleviating the network congestion. In

this regard, we plan to propose an optimal algorithm to forward the user requests to either the

central processing units or MEC units in order to satisfy the end-to-end delay constraints.
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APPENDIX A. THREE-POINT APPROXIMATION

In order to discretize a uniform random variable into three discrete points, we have used the

method proposed in [79]. Let G be the distribution of continuous Uniform(a,b) with mean m.

Also, let Gd be the distribution of the discretized G. By using the mass transportation problem

framework [79], the objective of the discretization is to minimize the distance d between the two

distributions which is defined as:

d(G,Gd) =

K∑
i=1

∫ zi−zi+1
2

zi−1−zi
2

|u− zi| dG(u),

where the number of points K to discretize the original distribution into is 3. That is, Gd =

{z1, z2 = m, z3} and zi ∈ R for ∀i. Also, z0 and z4 are −∞ and +∞, respectively. Since the service

demand cannot be negative, we have a = 0.

Then, the discretization (or 3-point approximation) problem can be written as: minz . d(G,Gd) =∫ z1+z2
2

−∞+z1
2

|u−z1| dG(u)+
∫ z2+z3

2
z1+z2

2

|u−z2| dG(u)+
∫ z3+∞

2
z2+z3

2

|u−z3| dG(u). After manipulating the right-

hand side, we can transform it into a simple form: zTQz + f(z), where z = [z1, z2, z3]T , f(z) is an

affine function of z, and Q is symmetric and positive definite. Thus, there exists a unique optimal

solution to the following quadratic problem (called P. A.1).

min
z
. zTQz + f(z) (A.1a)

subject to

z � 0, (A.1b)

a ≤ z1 ≤ z2 ≤ z3 ≤ b, (A.1c)

z2 = m, (A.1d)

where � is an element-wise greater than or equal to operator. The solution is non-negative

(Eq. A.1b), bounded by the lower and upper bound, i.e., a and b, respectively (Eq. A.1c), and
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finally, the mean value should remain the same (Eq. A.1b) as that of the original distribution. The

optimal solution, z, is a vector of three equally likely discrete values that are approximations of the

original uniform distribution with the same mean value.
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APPENDIX B. PROOF OF CLAIM 1

Let us assume W is a multiple of η∗. Then, the optimal partitioning of φ values and the cor-

responding group-wise least residual energy vector are Φ̂[1], Φ̂[2], · · · , Φ̂[G] and v̂, respectively, as

given in Chapter 5 Claim 1 with k = W − η∗×bWη∗ c = 0. That is, we have v̂ = [φ̂1
[1](= φ[1]), φ̂

2
[1](=

φ[η∗+1]), · · · , φ̂G[1](= φ[(G−1)η∗+1])]
T .

Proof by contradiction:

Suppose there exists a partitioning of φ’s, Φ̃[1], Φ̃[2], · · · , Φ̃[G], with the corresponding group-wise

least residual energy vector ṽ = [φ̃1
[1], φ̃

2
[1], · · · , φ̃

G
[1]]

T such that
∑G

b=1 φ̂
b
[1] <

∑G
b=1 φ̃

b
[1]. Then, there

exists at least one b′ such that φ̂b
′

[1](= φ[(b′−1)η∗+1]) < φ̃b
′

[1]. Let b′ be the smallest group index among

the groups satisfying the inequality, i.e., b′ = min argb=1,2,··· ,G{φ̂b[1] < φ̃b[1]}. Then, it is always the

case that φ̂1
[1](= φ[1]) = φ̃1

[1] since φ[1] is the smallest φ, and thus, b′ cannot be 1. Also, we have

φ̂G[1](= φ[(G−1)η∗+1]) ≥ φ̃G[1] since φ[(G−1)η∗+1] is the largest φ among those that can be chosen as

the minimum residual battery in a group. Therefore, b′ cannot be G. Now, let b′ be any integer

in the range (1, G). Since all φ values in Φ̃[b′], Φ̃[b′+1], · · · , Φ̃[G] are greater than or equal to φ̃b
′

[1],

φ[(b′−1)η∗+1](= φ̂b
′

[1]) has to be a member of one of Φ̃[1], Φ̃[2], · · · , Φ̃[b′−1]. That means at least one

φ satisfying φ1 < φ < φ[(b′−1)η∗+1] belongs to one of Φ̃[b′], Φ̃[b′+1], · · · , Φ̃[G], which contradicts that

all φ’s in Φ̃[b′], Φ̃[b′+1], · · · , Φ̃[G] are greater than or equal to φ̃b
′

[1]. In general, when W is not a

multiple of η∗, the optimal partitioning of φ values and the corresponding optimal vector of per-

group minimum residual batteries are Φ̂[1], Φ̂[2], · · · , Φ̂[G] and v̂ as given in Chapter 5 Claim 1 with

k = W −η∗×bWη∗ c > 0. Since φ[1], φ[2], · · · , φ[k] are smaller than the rest, if any of these belong to a

group (or groups), they reduce the minimum residual energy of the group (or groups) they belong

to compared to v̂, and thus, it yields a smaller sum of the group-wise least residual energy values

than that of v̂. �
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